

CHEIRON SCHOOL, SEPT 14, 2007, SPRING-8, JAPAN

Plan

- X-Ray Scattering
 - Characteristics of x-rays & synchrotron radiation
 - X-Ray scattering & spectroscopy
- Inelastic X-Ray Scattering & Spectroscopy
 - Momentum Resolved High Energy Resolution IXS
 - X-Ray Raman Scattering
 - X-Ray Emission Spectroscopy
 - Inelastic Nuclear Resonant X-Ray Scattering
 - High resolution and Magnetic Compton Scattering

Plan

- Part 1: Principles of x-ray scattering
- Part 2: High Resolution IXS
- Part 3: Nuclear Resonant IXS
- Part 4:
 - X-Ray Raman Scattering
 - X-Ray Emission Spectroscopy
 - Resonant IXS
 - Compton Scattering
 - High Resolution Compton Scattering
 - Magnetic Compton Scattering

Part I

X-Ray Scattering: Principles

"The Academy awarded the Nobel Prize in Physics to Wilhelm Conrad Röntgen, Professor in the University of Munich, for the discovery with which his name is linked for all time: the discovery of the so-called Röntgen rays or, as he himself called them, X-rays. These are, as we know, a new form of energy and have received the name 'rays' on account of their property of propagating themselves in straight lines as light does. The actual constitution of this radiation of energy is still unknown. Several of its characteristic properties have, however, been discovered first by Röntgen himself and then by other physicists who have directed their researches into this field. And there is no doubt that much success will be gained in physical science when this strange energy form is sufficiently investigated and its wide field thoroughly explored."

WILHELM CONRA

X-Ray World: 1895-2007

- 1) Electromagnetic spectrum : IR-VUV-Soft-Hard-Gamma
- 2) Röntgen's discovery
- 3) X-ray sources: x-ray tube, rotation anode, synchrotron radiation, dedicated storage ring with insertion devices, free electron laser, energy recovery LINAC, ...
- 4) X-ray scattering, spectroscopy, imaging, and therapy
- 5) Barla, Einstein, Bragg's, von Laue, Debye, Compton, Watson & Crick, Mössbauer, ... over a dozen Nobel prizes Last one: R. <u>KORNBERG</u>, Chemistry 2006

Nobel Prize in Chemistry, 2006, R. Kornberg, Stanford University Molecular basis of eukaryotic transcription

"Transcription is the process in a cell in which the genetic information stored in DNA is activated by the synthesis of complementary mRNA by enzymes called RNA polymerases. Eventually, the mRNA is translated by ribosomes into functional cell proteins. *Kornberg has made breakthrough progress in the molecular understanding of transcription and its regulation in eukaryotic cells. His combination of advanced biochemical techniques with structural determinations has enabled the atomic level reconstruction of RNA polymerase".*

Energy tunability, what does it mean ?

Table 1-1. Electron binding energies, in electron volts, for the elements in their natural forms.

Element	K 1s	L1 28	L2 2010	La 2020	M1 3s	Ma 301/2	Ma 302/2	M4 3da/2	Ms 3dsm	N1 48	No 401/2
1 H	13.6	1	2 - 1/2		-	. 2 . 1/2				-	. 2 . 1/2
2 He	24.6*										
3 1 i	54.7*										
4 Be	111.5*										
5 B	100*										
10	100*										
6 C	284.2*										
7 N	409.9*	37.3*									
8 O	543.1*	41.6*									
9 F	696.7*										
10 Ne	870.2*	48.5*	21.7*	21.6*							
11 Na	1070.8†	63.5†	30.65	30.81							
12 Mg	1303.0†	88.7	49.78	49.50							
13 AI	1559.6	117.8	72.95	72.55							
14 Si	1839	149.7*b	99.82	99.42							
15 P	2145.5	189*	136*	135*							
16 S	2472	230.9	163.6*	162.5*							
17 CI	2822.4	270*	202*	200*							
18 Ar	3205.9*	326.3*	250.6†	248.4*	29.3*	15.9*	15.7*				
19 K	3608.4*	378.6*	297.3*	294.6*	34.8*	18.3*	18.3*				
20 Ca	4038.5*	438.4†	349.7†	346.2†	44.3 †	25.4†	25.4†				
21 Sc	4492	498.0*	403.6*	398.7*	51.1*	28.3*	28.3*				
22. Ti	4966	560.9†	460.2†	453.8+	58 7÷	32.6†	32.6t				

Why synchrotron radiation for Mossbauer Spectroscopy ?

Bright and tunable over 100 keV with meV resolution
Collimated: good for monochromatization and focussing
Polarized; linear or circular with left or right handedness
Pulsed: suitable for time domain discrimination

Recoilless emission and absorption of γ - rays.

The distinction between x and γ is historical and relates to the origin of radiation:

electronic transitions :	x-rays
nuclear transitions :	γ -rays
hey overlap in energy	

¹⁸¹Ta Mossbauer line: U $_{K\alpha1}$ emission line: 6.238 keV γ-rays 98.439 keV x-rays

Energy tunability, what does it mean ?

Element	K 1s	L ₁ 2s	L ₂ 2p _{1/2}	L ₃ 2p _{3/2}	M1 3s	M ₂ 3p _{1/2}	M3 3b3/5	M4 3d3/2	$M_5 \ 3d_{5/2}$	N ₁ 4s	N ₂ 4p _{1/2}	N ₃ 4p _{3/2}
71 Lu	63314	10870	10349	9244	2491	2264	2024	1639	1589	506.8*	412.4*	359.2*
72 Hf	65351	11271	10739	9561	2601	2365	2108	1716	1662	538*	438.2†	380.7†
73 Ta	67416	11682	11136	9881	2708	2469	2194	1793	1735	563.4†	463.4†	400.9†
74 W	69525	12100	11544	10207	2820	2575	2281	1872	1809	594.1†	490.4†	423.6†
75 Re	71676	12527	11959	10535	2932	2682	2367	1949	1883	625.4†	518.7†	446.8†
76 Os	73871	12968	12385	10871	3049	2792	2457	2031	1960	658.2†	549.1†	470.7†
77 Ir	76111	13419	12824	11215	3174	2909	2551	2116	2040	691.1†	577.8†	495.8†
78 Pt	78395	13880	13273	11564	3296	3027	2645	2202	2122	725.4†	609.1†	519.4†
79 Au	80725	14353	13734	11919	3425	3148	2743	2291	2206	762.1†	642.7†	546.3†
80 Hg	83102	14839	14209	12284	3562	3279	2847	2385	2295	802.2†	680.2†	576.6†
81 TI	85530	15347	14698	12658	3704	3416	2957	2485	2389	846.2†	720.5†	609.5†
82 Pb	88005	15861	15200	13035	3851	3554	3066	2586	2484	891.8†	761.9†	643.5†
83 Bi	90524	16388	15711	13419	3999	3696	3177	2688	2580	939†	805.2†	678.8†
84 Po	93105	16939	16244	13814	4149	3854	3302	2798	2683	995*	851*	705*
85 At	95730	17493	16785	14214	4317	4008	3426	2909	2787	1042*	886*	740*
86 Rn	98404	18049	17337	14619	4482	4159	3538	3022	2892	1097*	929*	768*
87 Fr	101137	18639	17907	15031	4652	4327	3663	3136	3000	1153*	980*	810*
88 Ra	103922	19237	18484	15444	4822	4490	3792	3248	3105	1208*	1058	879*
89 Ac	106755	19840	19083	15871	5002	4656	3909	3370	3219	1269*	1080*	890*
90 Th	109651	20472	19693	16300	5182	4830	4046	3491	3332	1330*	1168*	966.4†
91 Pa	112601	21105	20314	16733	5367	5001	4174	3611	3442	1387*	1224*	1007*
92 U	115606	21757	20948	17166	5548	5182	4303	3728	3552	1439*b	1271*b	1043†

Table 1-1. Electron binding energies (continued).

X-Ray Scattering

X-Ray Scattering

Elastic	Rayleigh or Thompson scattering, $E_i = E_f$
Inelastic	Compton scattering from free electrons, or scattering from collective excitations like phonons, $E_i \neq E_f$
Coherent	Path unknown: cross-correlation: e.g. diffraction
Incoherent	Path known; self-correlation: momentum integrated
Resonant	Near electronic or nuclear bound states: anomalous
Non-resonant	Away from resonances,
Grazing incidence total reflection	Micro-to-milliradians (1 degree= 17.5 mrad)
Small angle	Degrees
Wide angle	Tens of degrees
Surface diffraction	In-plane, crystal truncation rods, liquid structure
Polarization sensitive	Scattering from spin
X-ray interferometry	Bonse-Hart, Michelson-Morley, Fabry-Perot,
X-ray standing wave	Surface structure and spectroscopy, Langmuir-Blodgett films
Time resoved	Minute-second-msec-µsec-nsec-psec-fsec
	From diffusion, to transport, to atomic bond formation

X-Ray Spectroscopy

X-Ray Spectroscopy

X-ray absorption spectroscopy	EXAFS ; atomic arrangements, bond distance, coordination no., symmtery, XANES : valence, Magnetic circular dichroism : spin-orbit magnetic moments
X-ray emission spectroscopy	Core-level atomic spectroscopy, valence
X-ray fluorescence spectroscopy	Quantitative analysis of elemental distribution
Inelastic x-ray scattering	<u>Compton scattering</u> for Fermi surface construction, phonon dispersion relations, phonon density of states, core-level spectroscopy, nuclear resonant scattering, x-ray Raman spectroscopy
X-Ray speckle spectroscopy	Slow dynamics from microscopic grains, correlation spectrosocpy in liquids,
X-Ray photoelectron spectroscopy	Valence level electron spectroscopy
Far and near Infra-red, VUV spectroscopy	Vibrational spectroscopy

X-rays are transverse electromagnetic waves where electric and magnetic fields are perpendicular to the direction of propagation (Barla, 1904).

Synchrotron radiation

Scattering from one electron can be classically viewed as radiation emitted from a dipole.

The radiated field at a distance R as a function of time is given by:

$$E_{rad}(R,t) = \frac{-e}{4\pi\varepsilon_0 c^2 R} a_X(t'), \quad t' = t - R/c$$

Classical electron radius

Differential Scattering cross-section

$$\frac{I_{scattered}}{I_{incident}} = \left(\frac{d\sigma}{d\Omega}\right) = \frac{\left|E_{rad}\right|^2 R^2 \Delta\Omega}{\left|E_{inc}\right|^2 A_0} = r_0^2 \cos^2 \psi$$

when all angles are included

$$\left(\frac{d\sigma}{d\Omega}\right) = \left(\frac{8\pi}{3}\right)r_0^2 = 0.655 \text{ barn, } 1 \text{ barn} = 10^{-24} \text{ cm}^2$$

The interesting aspect of this result is that the classical scattering Cross-section from an electron is INDEPENDENT of energy

Scattering cross-section (cont'd)

$$\left(\frac{d\sigma}{d\Omega}\right) = r_0^2 P$$

1synchrotron radiation,vertical scattering plane $P = \cos^2 \varphi$ synchrotron radiation,horizontal scattering plane $\frac{1}{2}(1 + \cos^2 \varphi)$ unpolarized source like x-ray tube

Momentum and energy transfer in a scattering process

Scattering of electromagnetic waves from charged particles Born Approximation

Consider a monochromatic electromagnetic field scattering from a isotropic, static medium with :

$$\nabla^2 E(r,\omega) + k^2 n^2(r,\omega) E(r,\omega) = 0$$

This equation has already some simplifications like dielectric constant has a slow variation with position, $\mathcal{E}(r,\omega) = n^2(r,\omega)$

where \boldsymbol{n} is the index-of-refraction, or refraction index of the medium.

Born & Wolf, Principles of Optics, 7th edition, pp 695-700 (1999)

If we take a single Cartesian component of $E(r,\omega)$ as $U(r,\omega)$, we can write the following scalar equation :

$$\nabla^2 U(r,\omega) + k^2 n^2(r,\omega) U(r,\omega) = 0$$

$$\nabla^2 U(r,\omega) + k^2 U(r,\omega) = -4\pi F(r,\omega) U(r,\omega)$$

$$F(r,\omega) = \frac{1}{4\pi} [n^2(r,\omega) - 1]$$
: scattering potential

If the field $U(r,\omega)$ is considered to be sum of incident and scattered fields

$$\boldsymbol{U}(\boldsymbol{r},\omega) = \boldsymbol{U}^{i}(\boldsymbol{r},\omega) + \boldsymbol{U}^{s}(\boldsymbol{r},\omega)$$

One can approximate the incident field to be a plane wave, which propogate according to Helmholtz equation:

$$(\nabla^2 + k^2)U^i(r,\omega) = 0$$

and the scattered field

$$(\nabla^2 + k^2)U^s(r,\omega) = -4\pi F(r,\omega)U(r,\omega)$$

An inhomogeneous differential equation can be solved using Green's function approach:

$$(\nabla^2 + \mathbf{k}^2) \mathbf{G}(\mathbf{\vec{r}} - \mathbf{\vec{r}}', \omega) = -4\pi \delta(\mathbf{\vec{r}} - \mathbf{\vec{r}}')$$

and choose $G(\vec{r} - \vec{r}', \omega) = \frac{e^{i\mathbf{k}|\mathbf{r}-\mathbf{r}'|}}{|\vec{r} - \vec{r}'|}$

When the field propagates in a specific direction in real space,

 \vec{s}_0 , the time independent part of $U^i(r,w) = e^{ik \vec{s}_0 \cdot \vec{r}}$, and

$$U(\mathbf{r},\omega) = e^{i\mathbf{k}\cdot\vec{\mathbf{s}}_{0}\cdot\vec{\mathbf{r}}} + \int_{V} F(\mathbf{r}',\omega) U(\mathbf{r}',\omega) \frac{e^{i\mathbf{k}|\mathbf{r}\cdot\mathbf{r}'|}}{|\vec{\mathbf{r}}\cdot\vec{\mathbf{r}}'|} d^{3}\mathbf{r}'$$

This is an integral equation for the total field $U(r, \omega)$ within the scattering volume V. If the solution inside the volume V (i.e inside the scatterer, for which we have no idea, that's the reason we are doing the experiment) is known, then the solution for the exterior can be obtained.

First order Born approximation

For weakly scattering media, it is possible to obtain solution to the integral equation by a perturbation approach, provided that the scattering medium is weakly interacting with the probe of x-rays.

The first order Born approximation states that amplitude of the scattered wave far away from the scatterer depends entirely on one and only one Fourier component of the scattering potential, namely the one that corresponds to the transferred momentum $K=k(s-s_0)$.

Conservation of momentum has a correspondence between classical and quantum mechanical treatment:

$$p = \hbar k$$
$$\Delta p = p - p' = \hbar k'$$

If a plane wave is incident on the scatterer in the direction of s, the Fourier component of the scattering potential can be determined.

And if one has the ability to vary the amount of momentum transfer at will, then, the scattering potential can be reconstructed.

This is the essence of x-ray scattering experiments.

Scattering geometry and physics

$$\omega = \omega_1 - \omega_2$$
 energy transferred
 $\vec{\mathbf{q}} = \vec{k_1} - \vec{k_2}$ momentum transferred

Inelastic x-ray scattering geometry and physics

$$\vec{k}_1, \omega_1$$

 \vec{k}_2, ω_2
 \vec{q}
 $\omega = \omega_1 - \omega_2$ energy transferred
 $\mathbf{q} = \mathbf{k}_1 - \mathbf{k}_2$ momentum transferred

The goal of the experiments is to measure the scattering cross-section

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}\omega}(\mathbf{q},\mathbf{h}\omega)$$

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}\omega}(q,\mathsf{h}\omega) \approx \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{T \text{ hom } pson} S(\mathbf{q},\omega) + \text{ resonant terms}$$

$$S(\mathbf{q},\omega) = \frac{1}{2\pi} \int dt e^{-i\omega t} \left\langle i \left| \sum_{jj'} e^{-i\mathbf{q}r_{j'}(t)} e^{i\mathbf{q}r_{j}(0)} \right| f \right\rangle$$

is the Fourier transform of the correlation of the phase of the scattering amplitude at different times

What is really measured?

The goal of the experiments is to measure the scattering cross - section

$$\frac{\mathrm{d}^2\sigma}{\mathrm{d}\Omega\mathrm{d}\omega}(\vec{\mathbf{q}},\hbar\omega)$$

Double differential Scattering cross-section

$$\frac{\mathrm{d}^2 \sigma}{\mathrm{d}\Omega \mathrm{d}\omega} (\vec{q}, \hbar\omega) \approx \left(\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right)_{T \,\mathrm{hom}\,pson} S(\vec{\mathbf{q}}, \omega) + \text{ resonant terms}$$

$$S(\vec{\mathbf{q}},\omega) = \frac{1}{2\pi} \int dt e^{-i\omega t} \left\langle i \left| \sum_{jj} e^{-i\vec{\mathbf{q}}r_j(t)} e^{i\vec{\mathbf{q}}r_j(0)} \right| f \right\rangle$$

is the Fourier transform of the correlation of the phase of the scattering amplitude at different times

Scattering geometry and physics

The physical origin of the correlations depends on how $1/\vec{q}$ compares with l_c , the characteristic length, of the system related to the spatial inhomogeneity.

when $\vec{\mathbf{q}} \cdot l_c \ll 1 \implies$ COLLECTIVE BEHAVIOUR when $\vec{\mathbf{q}} \cdot l_c \gg 1 \implies$ SINGLE PARTICLE BEHAVIOUR

when
$$\frac{1}{\vec{q}} \approx d$$
 and $\omega \approx$ phonon frequency \Rightarrow Collective ion excitation
when $\frac{1}{\vec{q}} \approx r_c$ and $\omega \approx$ plasma frequency \Rightarrow Valence electron excitation

IXS: Inelastic X-Ray Scattering

IXS is a measurement technique based on knowledge of exact energy and momentum transfer realized during a scattering experiment, revealing dynamic information about the scattering system.

Since x-ray energies may extend from a few eV to a few hundred keV, and since it is possible to measure energy loss or gain with a resolution from nano-eV to keV, the type of dynamic phenomena observed in an IXS experiment extends from nuclear hyperfine interactions to collective excitations of atoms such as phonons, to electronic excitations like plasmons or magnons, and eventually core-valence electron boundary to reconstruct the Fermi surface or determine orbital occupancies.

Parallel to the development of experimental energy and momentum resolution capabilities, the IXS methods have multiplied during the last century.

Starting with P. Debye, A. Compton and J. DuMond, and directly benefitting from the development of pure silicon and germanium, as well as synchrotron radiation and sophisticated detectors and analyzers, there are now many different IXS methods, often with overlapping and confusing names.

A SHORT SUMMARY OF CURRENT INELASTIC X-RAY SCATTERING TECHNIQUES

Technique	Source of interaction	Typical resolution	Deetection method	Location at the APS
Momentum-resolved, high energy resolution IXS: HERIX	Collective excitations of atoms, ions, molecules, PHONONS	1-3 meV	Back-scattering, curved and diced crystal analyzer	3-ID
Momentum-resolved, medium energy resolution resonant IXS: MERIX	Valence electrons near Fermi level	100-500 meV	Near-back-scattering, curved and diced crystal analyzer	9-ID, 12-ID, 33-ID
Momentum-integrated, nuclear resonant IXS: NRIXS	Collective excitations monitored through a nuclear resonance	0.5-2 meV	Nano-second time resolved detectors monitoring nuclear level decay	3-ID, 16-ID
High resolution Compton scattering: CS	Core and valence electrons	1 eV	Triple Laue crystal analyzer, PSD detector	
Magnetic Compton scattering: MCS	Spin polarized electrons	100 eV	Solid state detector	11-ID
X-ray Raman spectroscopy: XRS	Core electron excitations of low-Z elements	1 eV	Back-scattering curved flat analyzers	13-ID, 16-ID
X-ray emission spectroscopy: XES	X-ray fluorescence by incident photons: photon-in/photon-out	0.5 eV	Back-scattering curved flat analyzers	10-ID
Soft-X-ray IXS : PEEM	x-ray induced photoemission: photon-in/electron-out	5 meV	Electron spectrometer	4-ID

Part 2

HERIX: High Energy Resolution Inelastic X-Ray scattering with meV and momentum resolution

What is it ?

• High Resolution Inelastic X-Ray Scattering (IXS)

- Scattering from spatially localized or dispersed collective atomic or ionic excitations like PHONONS.
- Energy range: 15-30 keV,
- Incident beam: monochromatic to 1 meV level, tunable over several eV,
- Scattered beam: Incoherent, polychromatic over several hundred meV
- Analyzer: Bent, diced or Si, crystal analyzer, temperature stabilized to 10 mK
- Energy Resolution : ~ 1-2 meV
- Momentum transfer: Relevant to distinguish localized versus spatially dispersed excitations, sound velocity, phonon dispersion curves
- Main Features:
 - Allows determination of phonon dispersion relations without any kinematic limitation that is suffered by neutrons, works for most elements, liquids and solid alike, suitable for extreme conditions

A SHORT SUMMARY OF CURRENT INELASTIC X-RAY SCATTERING TECHNIQUES

Technique	Source of interaction	Typical resolution	Deetection method	Location at the APS
Momentum-resolved, high energy resolution IXS: HERIX	Collective excitations of atoms, ions, molecules, PHONONS	1-3 meV	Back-scattering, curved and diced crystal analyzer	3-ID
Momentum-resolved, medium energy resolution resonant IXS: MERIX	Valence electrons near Fermi level	100-500 meV	Near-back-scattering, curved and diced crystal analyzer	9-ID, 12-ID, 33-ID
Momentum-integrated, nuclear resonant IXS: NRIXS	Collective excitations monitored through a nuclear resonance	0.5-2 meV	Nano-second time resolved detectors monitoring nuclear level decay	3-ID, 16-ID
High resolution Compton scattering: CS	Core and valence electrons	1 eV	Triple Laue crystal analyzer, PSD detector	
Magnetic Compton scattering: MCS	Spin polarized electrons	100 eV	Solid state detector	11-ID
X-ray Raman spectroscopy: XRS	Core electron excitations of low-Z elements	1 eV	Back-scattering curved flat analyzers	13-ID, 16-ID
X-ray emission spectroscopy: XES	X-ray fluorescence by incident photons: photon-in/photon-out	0.5 eV	Back-scattering curved flat analyzers	10-ID
Soft-X-ray IXS : PEEM	x-ray induced photoemission: photon-in/electron-out	5 meV	Electron spectrometer	4-ID

Why X-Rays ?

Limited momentum transfer capability of neutrons at low energies favor x-rays to study collective excitations with large dispersion, like sound modes.

When the sound velocity exceeds that of neutrons in the liquid, xrays become unique. The low-momentum/high-energy transfer region is only accessible by x-rays.

Why synchrotron radiation for Spectroscopy ?

- 1. Bright and tunable over 100 keV with meV resolution
- 2. Collimated: good for monochromatization and focussing
- 3. Polarized; linear or circular with left or right handedness
- 4. Pulsed: suitable for time domain discrimination
- 5. Coherent: suitable for speckle and lensless imaging

The distinction between x and γ is historical and relates to the origin of radiation:

electronic transitions :	x-rays
nuclear transitions :	γ -rays
They overlap in energy	

¹⁸¹Ta Mössbauer line: U $_{K\alpha1}$ - emission line:

6.238 keV γ-rays 98.439 keV x-rays

Kinematics of Scattering : Neutrons

$$E(k) = \frac{\hbar^2 k^2}{2m}$$

$$\left(\frac{Q}{k_i}\right)^2 = 1 + \left(1 - \frac{\Delta E}{E_i}\right) - 2\sqrt{\left(1 - \frac{\Delta E}{E_i}\right)} \cos\theta$$

$$\Delta E << E_i \text{ no longer true}$$

Kinematics of Scattering : X-Rays versus Visible Light

T. Scopingo, et al, Rev.Mod.Phys., 77 (2005) 881

$$E = \frac{2\hbar}{\pi} V_L Q_{\text{max}} \sin\left(\frac{\pi}{2} \frac{Q}{Q_{\text{max}}}\right)$$
$$E(meV) = 4.192 \cdot 10^{-4} \cdot V_L(\text{m/sec})Q_{\text{max}}(\text{nm}^{-1}) \cdot \sin\left(\frac{\pi}{2} \frac{Q}{Q_{\text{max}}}\right)$$

Longitudinal Mode for Al [1 0 0] direction

$$\frac{3}{V_D^3} = \frac{1}{V_L^3} + \frac{2}{V_T^3}$$
$$V_{LA,[100]} = \sqrt{\frac{C_{11}}{\rho}}$$
$$V_{LA,[001]} = \sqrt{\frac{C_{33}}{\rho}}$$
$$V_{LA,[110]} = \sqrt{\frac{C44}{\rho}}$$

$$V_T^2 = \frac{3}{4} \left(V_L^2 - \frac{K}{\rho} \right)$$
$$V_L^2 = \frac{1}{\rho} \left(K + \frac{4}{3} G \right)$$
$$V_T^2 = \frac{G}{\rho}$$

- V_D : Debye, aggregate sound velocity
- *V_P* : Compressional, longitudinal, primary sound velocity
- *V*_S :, Shear, transverse, secondary sound velocity

Choice of energy

Si Reflection	Energy	Resolution	Reflectivity
at 90 °	(keV)	(meV)	(%)
1860	21.657	1.23	78
11 11 11	21.747	0.83	70
13 11 9	21.985	0.81	69
15 11 7	22.685	0.70	68
2040	23.280	0.87	76
12 12 12	23.724	0.80	75
14 14 8	24.374	0.69	74
22 2 0	25.215	0.576	71
13 13 13	25.701	0.37	60

30-ID-C: HERIX Spectrometer

Viscoelasticity, $\eta(\omega)$

H. Sinn, B. Glorieux, L. Hennet, A. Alatas, M. Hu, E. Alp, F. Bermejo, D. Price, M. Saboungi: Science, 299: 2047, 2003

Viscoelasticity, $\eta(\omega)$

H. Sinn, B. Glorieux, L. Hennet, A. Alatas, M. Hu, E. Alp, F. Bermejo, D. Price, M. Saboungi: Science, 299: 2047, 2003

Silicon - IXS spectra

Courtesy: Ahmet Alatas, Ayman Said, & Harald Sinn

Current-Current Correlation Function, liquid Boron

Sound dispersion in boron

Sound velocity: What's the big deal?

The sound velocity is directly related to elasticity, which is a function of chemical. and electronic properties materials. In Geosciences, for example, acoustic properties of materials in the Earth's deep interior are of general importance for accurate interpretation of seismic wave observations, geochemical modeling, and geodynamic simulations.

- Despite their major roles in the deep Earth, very little is known about the sound velocities and crystal chemistry of these chemically complex phases under the appropriate pressure-temperature conditions.
- The results of these IXS measurements under high pressure and temperature may enable a more realistic evaluation of the average mineralogy of Earth's lower mantle by comparing the measured sound velocities and elastic properties with a one-dimensional average Earth model, such as PREM.
- The results also give insight into whether observed lateral variations of seismic wave speeds in the lower mantle are due to a chemical origin.
- The electronic properties, including the charge and spin states, of iron in silicate perovskite were determined and will be discussed in light of our recent predictions considering the temperature effect on the electronic spin state of iron in dilute iron-bearing materials.

30-ID-B: MERIX Spectrometer

Ercan's dream machine: SHERI : Super High Energy Resolution Instrument

Why synchrotron radiation for Spectroscopy ?

- 1. Bright and tunable over 100 keV with meV resolution
- 2. Collimated: good for monochromatization and focussing
- 3. Polarized; linear or circular with left or right handedness
- 4. Pulsed: suitable for time domain discrimination
- 5. Coherent: suitable for speckle and lensless imaging

The distinction between x and γ is historical and relates to the origin of radiation:

electronic transitions :	x-rays
nuclear transitions :	γ -rays
They overlap in energy	

¹⁸¹Ta Mössbauer line: U _{Ka1} - emission line: 6.238 keV γ-rays 98.439 keV x-rays

Development of the average brightness of X-ray sources

$$b = -\frac{\sin(\theta_B - \alpha)}{\sin(\theta_B + \alpha)}$$

- b < 1 asymmetric,
- b = 1 symmetric,
- beam enlarges $\alpha = 0$
- b > 1 asymmetric
- beam shrinks

3-ID-B APS

Generations of high-resolution monochromators

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Nuclear Resonant Inelastic X-Ray Scattering

W. Sturhahn, J. Zhao, T. S. Toellner, Y. Xiao, B. Leu, M. Lerche, S. Kharlamova <u>Advanced Photon Source</u>

- T. Sage (Northeastern University)
- R. Scheidt, N. Silvernail (Notre Dame)
- S. Cramer, Y. Guo, M. Smith (UC, Davis)
- S. Durbin (Purdue)
- U. Jayasooria (East Anglia University, UK)
- W. Keune, (Duisburg)
- **B. Roldan Cuenya (University of Central Florida)**
- H. Gieffers, E. Tanis, M. Nicol (UNLV)

4 generation of Mössbauer Spectroscopists (1960-2000) at Argonne

What is it ?

- Nuclear Resonant Inelastic X-Ray Scattering (NRIXS, NIS, NRVS)
 - Scattering from PHONONS, detected via exciting a low-lying nuclear resonance
 - Energy range: 6-100 keV,
 - Incident beam: monochromatic to 1 meV level, tunable over several eV,
 - Scattered beam: Incoherent, polychromatic over several hundred eV
 - Analyzer: Mössbauer resonant nuclei embedded in the sample, nsec time resolved Avalanche Photodiode Detector (APD)
 - Energy Resolution : ~ 0.1-10 meV
 - Momentum transfer: A momentum integrated method, measuring displacements along the incident beam direction
 - Main Features:
 - Allows determination of phonon density of states, from which many thermodynamic functions can be deduced, element and isotope selective, can be used in crystalline, amorphous materials alike, thin films, buried layers, extreme environments

Standard Time structure @ APS

1 revolution=3.68 µsec =>1296 buckets

Why synchrotron radiation for Mossbauer Spectroscopy ?

Bright and tunable over 100 keV with meV resolution
Collimated: good for monochromatization and focussing
Polarized; linear or circular with left or right handedness
Pulsed: suitable for time domain discrimination

5. Coherent: ? SR-PAC

Recoilless emission and absorption of γ - rays.

The distinction between x and γ is historical and relates to the origin of radiation:

electronic transitions :	x-rays
nuclear transitions :	γ -rays
hey overlap in energy	

¹⁸¹Ta Mossbauer line: U $_{K\alpha1}$ emission line: 6.238 keV γ-rays 98.439 keV x-rays

Nuclear Resonance and Fallout in ⁵⁷Fe-decay

NRIXS on polycrystalline Fe (bcc):

NRIXS: The method and its information content

$$\sigma(\mathbf{k}, E) = \frac{\pi}{2} \sigma_0 \Gamma S(\mathbf{k}, E)$$
$$S(\mathbf{k}, E) = \frac{1}{2\pi} \int dt d^3 \mathbf{r} e^{i (\mathbf{k} \mathbf{r} - \omega t)} G_s(\mathbf{r}, t)$$
$$S_1(E) = \frac{E_R \cdot g(E)}{E(1 - e^{-E/kT})}$$

$$g(\mathbf{s},\omega) = \frac{1}{N} \sum_{m\kappa} \left| \mathbf{s} \cdot \mathbf{e}_{pm}^{(\kappa)} \right|^2 \delta(\omega - \omega_m^{(\kappa)})$$

$$G_{s}(\mathbf{r},t) = \left\langle e^{-ik\mathbf{r}(t)}e^{ik\mathbf{r}(0)} \right\rangle$$

$$S(\mathbf{k}, E) = \frac{1}{N} \sum_{j=1}^{N} S^{j}(\mathbf{k}, E)$$

Interaction cross-section

space-time Fourier transform of self correlation function

One-phonon term $S_I(E)$ & phonon density of states, g(E)

s: x-ray direction, e:polarization vector ω_m : phonon energy in mode m

Self-correlation of the phase of the scattering amplitude

Inelastic absorption probability

Iron phonon dispersion relations and phonon density of states

Characteristics of nuclear excitation and decay

intuitive expectation: large resonance absorption at high temperature

Mossbauer's observation: less absorption at high temperature

Properties extracted from NRIXS data

Property	Information content
Lamb-Mössbauer Factor, or recoil-free fraction	f_{LM} , recoil free fraction obtained from density of states, $g(E)$: $f_{LM} = \exp\left(-E_R \int \frac{g(E)}{E} \cdot \coth \frac{\beta E}{2} dE\right)$
Second order Doppler shift	$\delta_{SOD} = -E_0 \frac{\langle v^2 \rangle}{2c^2}$
Average kinetic energy	Extracted from second moment of energy spectrum: $T = \frac{1}{4E_R} \left\langle \left(E - E_R\right)^2 \right\rangle$
Average force constant	Extracted from third moment of energy spectrum: $\frac{\partial^2 U}{\partial z^2} = \frac{m}{2\hbar^2} \langle E^3 \rangle$
Phonon density of states	Extracted one-phonon absorption probability, $S_I(E)$: $g(E) = \frac{E}{E_R} \tanh(\beta E/2)(S_1(E) + S_1(-E))$
Specific heat (vibrational part only)	$C_V = 3k_B \int_0^\infty (\beta E/2)^2 \csc h(\beta E) g(E) dE$
Vibrational entropy	$S_V = 3k_B \int_0^\infty \left\{ \frac{\beta E}{2} \operatorname{coth}(\beta E) - \ln[2\sinh(\beta E)] \right\} g(E) dE$
Debye sound velocity (aggregate sound velocity)	From low-energy portion of the density of states: $g(E) = \frac{3V}{2\pi\hbar^3 v_D^3} E^2$
Mode specific vibrational amplitude	Contribution of mode α of atom j to zero-point fluctuation [11,12]: $\left\langle r_{j\alpha}^{2} \right\rangle_{0} = \frac{\hbar^{2}}{2m_{j}\omega_{\alpha}^{2}} e_{j\alpha}^{2}$
Mode specific Gruneisen constant	From pressure dependence of phonon frequencies ω_{α} of acoustic or optical modes: $\gamma_{\alpha} = -\frac{\partial \ln \omega_{\alpha}}{\partial \ln V}$
Temperature of the sample	From detailed balance between phonon occupation probability

The Mössbauer isotopes

lsotope	Energy (eV)	Half-life (ns)	ΔE (neV)
• ¹⁸¹ Ta	6238.	9800.	0.067
• ¹⁶⁹ Tm	8401	4.	114.0
• ⁸³ Kr	9400.	147.	3.1
⁷³ Ge	13263.	2953.	0.15
• ⁵⁷ Fe	14413.	97.8	4.67
• ¹⁵¹ Eu	21532.	9.7	47.0
• ¹⁴⁹ Sm	22490.	7.1	64.1
• ¹¹⁹ Sn	23870.	17.8	25.7
• ¹⁶¹ Dy	25655.	28.2	16.2
• ⁴⁰ K	29560.	4.25	107.0
• ¹²¹ Sb	37130.	5.0	131.6
¹⁴⁵ Nd	67100.	67.1	6.8
• ⁶¹ Ni	67400.	5.1	89.0
¹⁹³ r	73000.	6.3	72.3
¹³³ Cs	81000.	6.4	71.5
⁶⁷ Zn	93300.	9200.	0.049

Generations of high-resolution monochromators

EuFe₄Sb₁₂

Maybe the first sample to be studied partially and completely

Filled skutterudite: EuFe₄Sb₁₂

FIG. 4. Calculated vibrational density of states (VDOS): Total VDOS (solid) and La projected VDOS (dashed).

Feldman, et al, Phys Rev B 68 (2003)

VDOS (arb. units)

Figure 1. Calculated structure of ferrous nitrosyl tetraphenylporphyrin,

In-plane vibrations of heme Fe have not been identified in Raman spectra due to lack of electric dipole moment in D_{4h} symmetry.

Solvent absorption limit IR studies below 125 meV (1000 cm⁻¹).

Low frequency reactive modes are rarely identified with Raman or IR.
Why another vibrational technique for bio-inorganic and organic compounds ?

The general utility of vibrational spectroscopy is well understood.

However, site-selective techniques are needed to obtain vibrational information for **active sites** for complex molecular systems such as proteins and enzymes.

<u>Resonance Raman, difference infrared, and femtosecond coherence spectroscopy may provide</u> some site selectivity. However, relevant active-site vibrational information is not directly available with these techniques.

Selection rules for both infrared and Raman spectroscopy may restrict the observation of some functionally important vibrations.

For example, in-plane vibrations of the heme iron, which is related to the strength of the Fepyrrole bonds, have not been identified by resonance Raman method.

Also, reactive modes which would illuminate the energetics of chemical reactions lie at low frequencies that are difficult to get with traditional methods. For example, heme doming is very interesting to study.

Elastic properties such as velocity of sound, Gruneisen constant, and Debye Temperature can all be measured using NUCLEAR RESONANT INELASTIC-X-RAY SCATTERING

Iron-sulfur cubane compounds

 Reduced {4Fe4S}+ has not been possible to observe with resonant Raman technique, in contrast to oxidized {4Fe4S}²⁺

Why model compounds ?

Model porphyrins are capable of reversible oxygen binding and thus can serve as a model for some proteins.

e.g. 1,2 Dimethyl imidazole --> T-state (deoxy) hemoglobin picketfence porphyrins --> R-state: liganded to O₂

Lower oxygen affinity of T-state is attributed to spatial constraint posed by proximal histidine. In this state, Fe is 0.5 Å out-of-porphyrin plane, and drags the proximal histidine with it.

Scheidt, Durbin, Sage, J. Inorganic Biochemistry, 99 (2005) 60.

Dynamics of Molecules with Nuclear Resonant Scattering

A. Chumakov, R. Rüffer, O. Leupold, and I. Sergueev, Structural Chemistry, 14 (2003) 109

$$\breve{g}(E,\vec{s}) = \frac{V_0}{(2\pi)^3} \sum_j \int d\vec{q} \,\delta\!\left(E - \hbar\omega_j(\vec{q})\right) \left|\vec{s} \cdot \vec{e}_j(\vec{q})\right|^2$$

Orientational (projected) density of states, $\vec{e}_i(\vec{q})$ is the phonon polarization vector.

 $\breve{g}_{j}(\vec{s}) = \left| \vec{s} \cdot \vec{e}_{j}(\vec{q}) \right|^{2}$

Fraction of dos belonging to j^{th} vibrational mode for non-interacting modes like Einstein modes or optical modes (no or little momentum dependence)

randomly oriented powder

polarization vector of vibrations in the *j*th mode

 $e_{acoustic}^2 = m_{res}/M_{total}$

For acoustic modes, mean square displacements are the same

Modes

1. Stretch internal coordinate is defined by a variation in the bond length.

2. Angle bend internal coordinate describes a variation in the angle between two bonds which have one atom in common.

3. Torsion internal coordinate involves a variation in the dihedral angle of two planes which are defined by three consecutive bonds connecting four atoms.

4. Out-of-plane Bend internal coordinate is defined by a variation in the angle between a bond and a plane defined by two bonds.

B. Rai, S. Durbin, W. Sturhahn, et al, Biophysics Journal, 2002

Temperature dependence of dos

Temperature dependence of dos

Pressure dependence of dos

Pressure dependence of dos

Porphyrin model compounds

J. T. Sage, et al, J. Phys. Cond. Matt, 13 (2001) 7707

The heme doming coordinate is directly Involved in oxygen-binding reaction.

In proteins, it is important to know whether It acquires a global character.

Doming modes are expected in the range of 6-8 meV.

Porphyrin model compounds mimic the heme group found at the active site of many proteins involved in biological usage of oxygen and nitric oxide.

2MeHIm-TPP: Methyl-Hydrogen-Imidazole tetra phenyl porphyrin

OEP : Octo ethyl porphyrin

TPP

8

: Tetra phenyl porphyrin

Cramer, S, et al Nuclear Resonance Vibrational Spectroscopy (NRVS) of Fe-S model compounds, Fe-S proteins, and nitrogenase. Hyperfine Interactions (2007), 170(1-3), 47-54.

Starovoitova, V. et al Vibrational Spectroscopy and Normal-Mode Analysis of Fe(II) Octaethylporphyrin. Journal of Physical Chemistry B (2006), 110(26), 13277-13282.

Adams, K. et al s. Fe Vibrational Spectroscopy of Myoglobin and Cytochrome f. Journal of Physical Chemistry B (2006), 110(1), 530-536.

Xiao, Y. et al How Nitrogenase Shakes - Initial Information about P-Cluster and FeMo-cofactor Normal Modes from Nuclear Resonance Vibrational Spectroscopy (NRVS). Journal of the American Chemical Society (2006), 128(23), 7608-7612.

Xiao, Y. et al Dynamics of an [Fe4S4(SPh)4]2- cluster explored via IR, Raman, and nuclear resonance vibrational spectroscopy (NRVS)-analysis using 36S substitution, DFT calculations, and empirical force fields. Dalton Transactions (2006), (18), 2192-2201.

Scheidt, W. R. et al. Nuclear resonance vibrational spectroscopy - NRVS. Journal of Inorganic Biochemistry (2005), 99(1), 60-71.

Zeng, W. et al Direct Probe of Iron Vibrations Elucidates NO Activation of Heme Proteins. Journal of the American Chemical Society (2005), 127(32), 11200-11201.

Leu, B. et al. Vibrational dynamics of biological molecules Multi-quantum contributions. Journal of Physics and Chemistry of Solids (2005), 66(12), 2250-2256.

Xiao, . et al P. Normal Mode Analysis of Pyrococcus furiosus Rubredoxin via Nuclear Resonance Vibrational Spectroscopy (NRVS) and Resonance Raman Spectroscopy. Journal of the American Chemical Society (2005), 127(42), 14596-14606.

Smith, M et al. Normal-Mode Analysis of FeCl4- and Fe2S2Cl42- via Vibrational Moessbauer, Resonance Raman, and FT-IR Spectroscopies. Inorganic Chemistry (2005), 44 (16), 5562-5570.

Leu, B. et al. Quantitative Vibrational Dynamics of Iron in Nitrosyl Porphyrins. Journal of the American Chemical Society (2004), 126(13), 4211-4227.

Starovoitova, V; Vibrational spectroscopy and normal-mode analysis of Fe(II) octaethylporphyrin JOURNAL OF PHYSICAL CHEMISTRY B, 110 (26) 13277-13282 JUL 6 2006

Xiao, YM; et al How nitrogenase shakes - Initial information about P-cluster and FeMo-cofactor normal modes from nuclear resonance vibrational Spectroscopy (NRVS) JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 128 (23) 7608-7612 JUN 14 2006

Rai, BK; Prohofsky, EW; Durbin, SM Single-atom test of all-atom empirical potentials Fe in myoglobin JOURNAL OF PHYSICAL CHEMISTRY B, 109 (40) 18983-18987 OCT 13 2005

Smith, MC; et al Normal-mode analysis of FeCl4- and Fe2S2Cl42- via vibrational Mossbauer, resonance Raman, and FT-IR spectroscopies INORGANIC CHEMISTRY, 44 (16) 5562-5570 AUG 8 2005

Scheidt, WR; Durbin, SM; Sage, JT Nuclear resonance vibrational spectroscopy - NRVS JOURNAL OF INORGANIC BIOCHEMISTRY, 99 (1) 60-71 JAN 2005

Leu, B. et al Quantitative vibrational dynamics of iron in nitrosyl porphyrins JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 126 (13) 4211-4227 APR 7 2004

alp @ anl.gov

Geophysics applications

Sound velocity: What's the big deal?

The sound velocity is directly related to elasticity, which is a function of chemical. and electronic properties materials. In Geosciences, for example, acoustic properties of materials in the Earth's deep interior are of general importance for accurate interpretation of seismic wave observations, geochemical modeling, and geodynamic simulations.

Despite their major roles in the deep Earth, very little is known about the sound velocities and crystal chemistry of these chemically complex phases under the appropriate pressure-temperature conditions.

The results of these IXS measurements under high pressure and temperature may enable a more realistic evaluation of the average mineralogy of Earth's lower mantle by comparing the measured sound velocities and elastic properties with a onedimensional average Earth model, such as PREM.

The results also give insight into whether observed lateral variations of seismic wave speeds in the lower mantle are due to a chemical origin.

The electronic properties, including the charge and spin states, of iron in silicate perovskite were determined and will be discussed in light of our recent predictions considering the temperature effect on the electronic spin state of iron in dilute iron-bearing materials.

$$\frac{K_S}{\rho} = V_P^2 - \frac{4}{3}V_S^2$$
$$\frac{G}{\rho} = V_S^2$$
$$\frac{3}{V_D^3} = \frac{1}{V_P^3} + \frac{2}{V_S^3}$$
$$K_s: \text{ adiabatic bulk modulus}$$

- G : shear modulus
- V_P: compression wave velocity
- V_s: shear wave velocity
- V_D : Debye sound velocity
- P : density

Alloying effects of Ni and Si on density, Vp, Vs of hcp-Fe by NRIXS study PDOS of Fe_{0.92}Ni_{0.08} PDOS of Fe_{0.85}Si_{0.15} $\int_{u_{0}}^{u_{0}} \int_{u_{0}}^{u_{0}} \int_{u_{0}}^{u$

$$\frac{G}{\rho} = V_s^2$$

Addition of Ni slightly decreases the compression wave velocity and shear wave velocity of Fe under high pressures. Substitution of Si in Fe increases the compressional wave velocity and shear

Temperature: spectroradiometry and detailed balance principle of the energy spectra Pressure: ruby pressure scale, EoS of NaCl, and thermal EoS of hcp-Fe

Speed of sound of Iron at high pressure/temperatures

J.F. Lin, et al, Geophys. Res. Lett., 30 (2003) 2112

$$\frac{K_S}{\rho} = V_P^2 - \frac{4}{3}V_S^2$$
$$\frac{G}{\rho} = V_S^2$$
$$\frac{3}{V_D^3} = \frac{1}{V_P^3} + \frac{2}{V_S^3}$$

 K_s : adiabatic bulk modulusG: shear modulus V_P : compression wavevelocity V_s : shear wave velocity V_D : Debye sound velocityP: density

Classical thermodynamical quantities and phonon density of states

In the Harmonic Approximation (i.e. interatomic forces are linear in atomic displacement) the thermodynamic functions are additive functions of the normal mode frequencies. Thus, they are expressible as averages over frequency distribution function, $\mathbf{g}(\omega)$, or phonon density of states.

1.Helmholtz Free Energy

$$F_{V} = 3RNk_{B}T \int \ln\left\{2\sinh\left(\frac{\hbar\omega}{k_{B}T}\right)\right\} \mathbf{g}(\omega)\mathbf{d}\omega$$

2. Vibrational Energy

$$F_{V} = 3RN\frac{\hbar}{2}\int \ln\left\{ \coth\left(\frac{\hbar\omega}{k_{B}T}\right) \right\} \omega \cdot \mathbf{g}(\omega) \mathbf{d}\omega$$

3. Specific heat

$$C_{\rm P} = 3RNk_B \int \left(\frac{\hbar\omega}{2k_BT}\right)^2 \operatorname{csch}\left(\frac{\hbar\omega}{k_BT}\right) \, \mathbf{g}(\omega) \, \mathbf{d}\omega$$

4.Entropy

$$S = 3RNk_B \int \left\{ \left(\frac{\hbar\omega}{2k_BT} \right) \coth\left(\frac{\hbar\omega}{k_BT} \right) - \ln\left[2\sinh\left(\frac{\hbar\omega}{k_BT} \right) \right] \right\} g(\omega) d\omega$$

What do Nuclear Resonant Spectroscopy need?

- Bunch-to-bunch separation > 150 nsec up to 300 nsec
- clean bunches (purity < 10⁻¹⁰)
- lower emittance / top-up
- Brilliance >> 10²⁰, 6-30 keV
- Higher current / bunch (30 mA/bunch, 80 ps or longer)

What does Nuclear Resonant Spectroscopy deliver in return ?

• Phonon dynamics via NRIXS

- Monolayers, buried layers, spin dynamics
- Nanoscale materials
- Dynamics at pressures exceeding 2 Mbar, 3000 K
- Dilute systems to extend the applicability of the method
- Applications in astrophysics, geophysics, biophysics, and condensed matter & materials physics

Structural, magnetic and electronic structure via

Synchrotron Mössbauer Spectroscopy

- Element and isotope selective magnetometry
- Melting temperature at high pressures
- In-situ oxidation/reduction kinetics for environmental problems
- Mössbauer microscope

Optics development

Monochromators, new alternative crystals,

Novel ideas

- X-ray wavelength standards

Part 4

X-Ray Raman Scattering X-Ray Emission Spectroscopy RIXS Compton Scattering

A SHORT SUMMARY OF CURRENT INELASTIC X-RAY SCATTERING TECHNIQUES

Technique	Source of interaction	Typical resolution	Deetection method	Location at the APS
Momentum-resolved, high energy resolution IXS: HERIX	Collective excitations of atoms, ions, molecules, PHONONS	1-3 meV	Back-scattering, curved and diced crystal analyzer	3-ID
Momentum-resolved, medium energy resolution resonant IXS: MERIX	Valence electrons near Fermi level	100-500 meV	Near-back-scattering, curved and diced crystal analyzer	9-ID, 12-ID, 33-ID
Momentum-integrated, nuclear resonant IXS: NRIXS	Collective excitations monitored through a nuclear resonance	0.5-2 meV	Nano-second time resolved detectors monitoring nuclear level decay	3-ID, 16-ID
High resolution Compton scattering: CS	Core and valence electrons	1 eV	Triple Laue crystal analyzer, PSD detector	
Magnetic Compton scattering: MCS	Spin polarized electrons	100 eV	Solid state detector	11-ID
X-ray Raman spectroscopy: XRS	Core electron excitations of low-Z elements	1 eV	Back-scattering curved flat analyzers	13-ID, 16-ID
X-ray emission spectroscopy: XES	X-ray fluorescence by incident photons: photon-in/photon-out	0.5 eV	Back-scattering curved flat analyzers	10-ID
Soft-X-ray IXS : PEEM	x-ray induced photoemission: photon-in/electron-out	5 meV	Electron spectrometer	4-ID

• High Resolution Inelastic X-Ray Scattering (IXS)

- Scattering from spatially localized or dispersed collective atomic or ionic excitations like PHONONS.
- Energy range: 15-30 keV,
- Incident beam: monochromatic to 1 meV level, tunable over several eV,
- Scattered beam: Incoherent, polychromatic over several hundred meV
- Analyzer: Bent, diced or Si, crystal analyzer, temperature stabilized to 10 mK
- Energy Resolution : ~ 1-2 meV
- Momentum transfer: Relevant to distinguish localized versus spatially dispersed excitations, sound velocity, phonon dispersion curves
- Main Features:
 - Allows determination of phonon dispersion relations without any kinematic limitation that is suffered by neutrons, works for most elements, liquids and solid alike, suitable for extreme conditions

• Nuclear Resonant Inelastic X-Ray Scattering (NRIXS, NIS, NRVS)

- Scattering from PHONONS, detected via exciting a low-lying nuclear resonance
- Scattering from phonons
- Energy range: 6-100 keV,
- Incident beam: monochromatic to 1 meV level, tunable over several eV,
- Scattered beam: Incoherent, polychromatic over several hundred meV
- Analyzer: Mössbauer resonant nuclei embedded in the sample, nsec time resolved Avalanche Photodiode Detector (APD)
- Energy Resolution : ~ 0.1-10 meV
- Momentum transfer: A momentum integrated method, measuring displacements along the incident beam direction
- Main Features:
 - Allows determination of phonon density of states, from which many thermodynamic functions can be deduced, element and isotope selective, can be used in crystalline, amorphous materials alike, thin films, buried layers, extreme environments

4

• X-ray Raman Scattering (XRS):

- Indirect emission of photons from inner core energy levels via absorption of the incident photon, when the transferred energy matches the energy level between core levels. XRS enables measurement of light element XANES or EXAFS using hard x-rays.
- Energy range: 6-10 keV,
- Incident beam: monochromatic, tunable over 1000 eV,
- Scattered beam: Incoherent, polychromatic,
- Analyzer: Bent, undiced Si or Ge crystal analyzer,
- Energy Resolution : ~ 1 eV
- Momentum transfer: Relevant to distinguish dipole transitions from higher order terms
- Main Features:
 - Allows determination of XANES or EXAFS for low Z-elements in mixtures or complex environments

J. PHYS. SOC. JAPAN 21 (1966) 2087

X-Ray Raman Scattering

Tadasu Suzuki

Faculty of Science and Technology, Sophia University, Chiyoda-ku, Kioi-cho 7, Tokyo. (Received July 30, 1966)

In order to verify this effect experimentally, beryllium, boron and carbon were examined. Incident X-rays were generated from a rotating copper target. This X-ray source was operated at 50 kV and 80 mA. The usual X-ray diffractomerer with a LiF single crystal cut parallel to (100) plane was used for the energy analysis. One of the results obtained for beryllium is shown in Fig. 1. When the scattering angle is increased, the peak of Compton scattering shifts to the longer wave length side and overlaps the Raman scattering, which seems scarcely to change its position. Quantitative measurements were performed by a fixed-time counting method. The observed wave length differences $(\Delta \lambda)$ are $0.02_{3}A$, $0.03_{8}A$ and $0.05_{8}A$ for beryllium, boron and carbon and correspond to 115e V, 180e V and 290e V, respectively. These values are nearly equal to the 1s electron energies of each atom.

$$\begin{split} H &= H_1 + H_2 \\ H &= -\frac{e}{m} \vec{p} \cdot \vec{A} + \frac{e^2}{m} \vec{A}^2 \\ w &= \frac{2\pi}{h} \left| \left\langle f, j \right| H_1(2) + H_2(1) \left| 0, i \right\rangle \right|^2 * \delta \left(E_f - E_i - h \left(v_i - v_j \right) \right) \end{split}$$

 $\begin{array}{l} H_1(2): \mbox{Linear in A, } 2^{\rm nd} \mbox{ order perturbation} \\ H_2(1): \mbox{Quadradtic in A, } 1^{\rm st} \mbox{ order perturbation} \\ <\!\!f,\!\!j \mid : \mbox{Electronic final state } <\!\!f \mid , \mbox{photon final state } <\!\!j \mid \\ <\!\!f,\!\!j \mid : \mbox{Electronic initial state } <\!\!0 \mid , \mbox{photon initial state } <\!\!i \mid \end{array}$

In visible Raman scattering, $H_2(1) \ll H_1(2)$ because

 $\lambda >> a$: wavelength longer than electron radius This is also true for K-shell electrons of the high Z elements. However, for low-Z elements, $H_1(2)$ diminishes,

$$w = \frac{4\pi^3 e^4 h}{m^2 v_i v_j} \left(1 + \cos^2 \theta\right) \left| \left\langle f \left| e^{i(k_j - k_f) \cdot \vec{r}} \right| 0 \right\rangle \right|^2 * \delta \left(E_f - E_i - h \left(v_i - v_j \right) \right)$$

It can be shown that the transition probability can be reduced to:

$$w = \frac{64\pi^5 e^4 h}{m^2 c^2} \left(1 + \cos^2\theta\right) \sin^2(\theta/2) \left|\left\langle i |\vec{r}|f \right\rangle\right|^2$$

This is similar to matrix elements describing the EXAFS equation, providing the formal basis that either experimental approaches can benefit from the same interpretation.

Bulk-sensitive XAS characterization of light elements: from X-ray Raman scattering to X-ray Raman spectroscopy

Uwe Bergmann^{a,b,*}, Pieter Glatzel^b, Stephen P. Cramer^{a,b}

Microchemical Journal 71 (2002) 221-230

Fig. 2. Comparison of graphite K-edge XANES taken by XRS (top) with 1 eV FWHM resolution and by conventional XAS in electron yield mode (bottom) at 0.15 eV FWHM resolution. The analyzer energy was set to $E_{\rm f}$ =6.46 keV, at an incident intensity of some 10¹³ photons/s.

U. Bergmann, et al, Microchemical Journal, 71 (2002) 221

T. T. Fister, G. Seidler, et al, Rev. Sci. Instr. 77 (2006) 063901

Optical System & Performance

> Optical system and spectrometer for non-resonant inelastic x-ray scattering

> Performance at the near backscattering energy of Si(555) / Ge(555) reflection

Beamline			IXS Spectrometer	
HRM Configuration	Flux (×10 ¹¹ photons/sec)	Bandwidth (meV)	Analyzer	Resolution (meV)
Si(333)	1.5	50	Si(555) 2-m diced	70
Si(440)	2.3	80	Si(555) 2-m DRIE diced	185
Si(400)	5.7	153	Si(555) 2-m bent	305
Si(220)	13.5	480	Si(555) 1-m bent	850
None (DCM)	120	1250	Ge(555) 1-m bent	1300

IXS Spectrometer

National Synchrotron Radiation Research Center

Courtesy: Yong Cai, NSRRC/Spring-8

Fig. 1. High-pressure IXS spectra for graphite in horizontal and vertical directions plotted as normalized scattered intensity versus energy loss (incident energy - analyzer energy). The scattered intensity is normalized to the incoming intensity. The lower energy peak, labeled π , corresponds to 1s to π^* transitions and the higher energy portion, labeled σ , corresponds to 1s to σ^* transitions. The bottom spectra, taken in the horizontal direction, probes bonds in the a plane and does not show any π -bonding before and after the high-pressure transition. The top seven spectra, taken in the vertical direction, probe the c plane. After the transition, the o bonds increase at the expense of the π bonds.

• X-Ray Emission Spectroscopy (XES)

- Direct emission of a fluorescence line via absorption of the incident photon, whose energy is tuned to a particular point around the absorption edge, and scattered radiation is analyzed. Enables identification of features measured in a fluorescence measurement, sensitive to spin.
- Energy range: 1-20 keV,
- Incident beam: monochromatic, tunable over 100 eV,
- Scattered beam: Incoherent, polychromatic,
- Analyzer: Bent, undiced Si or Ge crystal analyzer, for hard x-rays, gratings for soft x-rays
- Energy Resolution : ~ 1 eV
- Momentum transfer: Relevant to distinguish dipole transitions from higher order terms
- Main Features:
 - Allows better chemical (valence) state characterization compared to straight X-ray Absorption spectroscopy.

Resonant X-Ray Emission Spectroscopy

- Variable incident energy tuned to a particular point near x-ray absorption edge, ∆E= 1eV
- High resolution energy analysis of the scattered radiation (1 eV) by bent crystal analyzer (it can be flat)
- Tunable over large energy range

 $5 < E_{inc} < 12 \text{ keV}$

Some definitions (still arbitrary)

X-Ray Absorption (XAS)

 Tuning the incident energy across an absorption edge with no analysis of the transmitted radiation

Partial Fluorescence Yield (PFY)

Tuning the incident energy across an absorption edge with fixed energy filter

• Resonant X-Ray Emission (RXES)

- Fixed incident energy with energy analysis of the scattered radiation

Resonant Inelastic X-Ray Spectroscopy (RIXS)

Fixed incident energy with energy & momentum analysis of the scattered radiation

A high-spin to low-spin transition of Fe in magnesiowustite

Iron Partitioning in Earth's Mantle: Toward a Deep Lower Mantle Discontinuity

James Badro,¹ Guillaume Fiquet,¹ François Guyot,¹ Jean-Pascal Rueff,² Viktor V. Struzhkin,³ György Vankó,⁴ Giulio Monaco⁴

X-ray emission spectra of (Mg_{0.83},Fe_{0.17})O Badro et al., Science, 2003

COVER An artist's interpretation of the deep Earth. Experiments on the electron spin state of iron at high pressures indicate unexpected processes occurring within Earth's lowermost mantle.

Based on simple thermodynamic calculations, it is predicted that all iron goes into magnesiowustite in the lower mantle. However, in situ study X-ray diffraction and quenched sample analyses on silicate perosvkite and magnesiowustite did not observe such strong effect.
X-ray emisson spectroscopy in a diamond anvil cell: Study spin states of Fe in Fe₃C and (Mg_{0.4},Fe_{0.6})O

- XES of Fe KB at 16 ID-D, HPCAT, APS XES system setup at 16 ID-D, HPCAT
- Focused X-ray beam (20x60 µm spot)
- High resolution Rowland-circle spectrometer (<1 eV)
- Beryllium+B gasket in a diamond cell
 In cooperation with V. Struzhkin, M. Hu, P. Chow, H.K. Mao, and R.J. Hemley

What is it ?

• Resonant Inelastic X-Ray Scattering (RIXS)

- Scattering from spatially localized or dispersed valence electron excitations near the Fermi level, enhanced due to resonance near the absorption edge.
- Energy range: 6-12 keV,
- Incident beam: monochromatic, tunable over 100 eV,
- Scattered beam: Incoherent, polychromatic,
- Analyzer: Bent, diced or undiced Si, Ge, LiNbO3 crystal analyzer, for hard xrays,
- Energy Resolution : ~ 0.1 eV
- Momentum transfer: Relevant to distinguish localized versus spatially dispersed excitations
- Main Features:
 - Allows determination of solid-state effects in electronic excitations with element selectivity in complex materials

Two pairs of Si (220) and Si (400) crystals are aligned side by side to provide \sim 20, 50, 70, and 120 meV resolution over 5-15 keV range.

The Kohzu K15M stages capable of rotating 360 degrees with 35 μ rad coarse resolution, and 0.025 microradian fine resolution over 2 degrees. This is a new design with a solenoid clutch mechanism to decouple coarse and fine motions.

MERIX analyzers currently under development

Crystal	Energy	Status
analzyer		
Ge (7 3 3)	9 keV ,	2m, Ready to go (diced, and bent) 110
	Cu K-edge	meV
Ge (6 2 4)	8.33 keV,	1m analyzer diced
	Ni K-edge	2m analyzer, diced and bent (260 meV)
		1 unpolished wafer ready
LiNbO3 (0 6 0)	8.33 keV,	1m diced
	Ni K-edge	2 bonded and diced
		2 polished wafers ready (1mm thick)
LiNbO3 (3 3 6)	7.71 keV,	15 wafers (1.5 mm) to be
	Co K-edge	delivered10/10/06
		5 wafers (0.5 mm) to be delivered $10/10/06$
Ge (6 4 0)	7.11 keV,	4 wafers (2mm thick) in production
	Fe K-edge	
Si (4 4 0)	6.54 keV,	4 wafers polished (2 mm thick)
	Mn K-edge	
Si (5 1 1)	5.99 keV,	4 wafers (2mm thick), in production
	Cr K-edge	
Si (8 0 0)	8.76 keV,	1 m analyzer, diced
	non-resonant	3 wafers, not-polished yet

Various analyzers under production (Y. Shvydko, A. Said, N. Kodituwakku, H. Sinn)

Ge (008) 1m

Ge (337) 2m

LiNbO₃ (0 6 0)

Need for 100 meV

What is it ?

- X-Ray Compton Scattering (CS, MCS):
 - Deep inelastic scattering of photons from valence (and core) electrons, enabling the momentum-space depiction of the Fermi surface.
 - Energy range: 6-200 keV,
 - Incident beam: monochromatic, linear or circularly polarized, fixed energy during the experiment
 - Scattered beam: Incoherent, polychromatic,
 - Analyzer: Germanium solid state detector for Magnetic Compton scattering, Bent Laue crystal analyzer combined with position sensitive detector for high resolution Compton Scattering
 - Energy Resolution : ~ 100-600 eV
 - Momentum transfer: Relevant to distinguish core electrons from valence electrons
- Main Features:
 - Allows determination of Fermi Surface in poor metals where deHassvanAlphen method may nor work, Orbital occupancy breakdown in complex systems like in correlated electron systems, a true ground state spectroscopy

Compton scattering by free electrons

The change in energy of photons as they are scattered by an electron is proportional to Compton scattering length given by

$$\lambda_{c} = \frac{\hbar}{mc}$$

$$\frac{k}{k'} = \frac{\varepsilon}{\varepsilon'} = \frac{\lambda'}{\lambda} = 1 + \lambda_{c}k(1 - \cos\psi)$$

$$\alpha = \frac{r_{0}}{\lambda_{c}} = \frac{1}{137}$$

It is interesting to note that the ratio between classical electron radius and Compton scattering length is a fundamental constant.

Furthermore, it should be noted that Compton scattering is an extreme example of inelastic x-ray scattering, and it can be used to differentiate between localized (core) electrons and valence (free) electrons.

Compton scattering by free electrons

 When the incident photon and electron in the solid collide, due to conservation of energy and momentum, the photon loses some of its energy and shifted downward. This shift is given by:

$$\lambda_{final} - \lambda_{initial} = \frac{h}{m_{el}c}(1 - \cos\theta)$$

- The key experimental elements are already in this equation:
 - The larger the scattering angle, the larger is the Compton shift.
- The larger the incident energy, the larger the penetration depth, and escape depth for the radiation

Fermi surface

Fermi surface defines the boundary between occupied and unoccupied states both in momentum and in energy space.

The 3-D topology of the Fermi surface in momentum space is one way to visualize the free electron distribution. This can be measured by finding the extremum in the first derivative of momentum density

Compton Profile, CP

The measured Compton profile $J(p_z)$ is proportional to the twice integrated electron momentum density r (**p**):

$$J(p_z) = \iint \rho(\mathbf{p}) \, dp_x dp_y$$

$$\rho(\mathbf{p}) = \frac{1}{2\pi^3} \sum_{\mathbf{k},\nu} \left| \psi_{\mathbf{k},\nu}(\mathbf{r}) e^{-i(\mathbf{p}\cdot\mathbf{r})} d\mathbf{r} \right|$$

 $\psi_{{\bf k},\nu}({\bf r})$ denotes the the electron wave function for state **k** and band v, and the summation is over all occupied states.

In a metallic system the CP will contain the clues for the positions and sizes of Fermi-surfacerelated discontinuities in the momentum density. However, the the double integral in above equation obscure this information. One approach is to measure CP's along a many directions, and to use the set of two-dimensional ~2D projections to "reconstruct" the 3D function r (**p**).

Three-dimensional Momentum Density Reconstruction

Three-dimensional momentum density, n(p), can be reconstructed from ~10 Compton profiles.

~10 Compton profiles:

Courtesy: Dr. Y. Sakurai, Spring-8

FIG. 4. Contour maps of the theoretical (a) and experimental (b) struct $\rho(\mathbf{p})$ on the (110) plane reconstructed using the filter function. Resolution broadening is included in the theory. The contour interval is 0.035 electrons/a.u.³ The dashed lines mark the first Brillouin-zone boundary.

FIG. 6. [100], [110], and [111] sections through the reconstructed theoretical (solid lines) and experimental (dots) momentum densities shown in Fig. 4. Both sets of densities have been normalized such that B(0) equals the number of valence electrons.

44

BL08W: High Energy Inelastic Scattering

BL08W provides unique tools to study the electronic and magnetic properties of solids in terms of orbitals and Fermi surfaces.

Station A: 175-275 keV

Magnetic Compton Scattering

- CMR-related materials
- Magnetic multilayers
- Actinides, etc.

Station B: 115 keV **High-resolution Compton**

scattering

- Smart alloys
- Metal hydrides
- CMR materials
- High-Tc Cuprates
- Quasicrystals
- Water & Aqueous solution

Magnetic Compton Experimental Station B (a) Experimental Station-A Branch High-resolution Compton Experimental Station /

Public Beamline: Open to Users Worldwide

Courtesy: Dr. Y. Sakurai, Spring-8

Magnetic Compton Scattering Spectrometer BL08W, Station-A

Cauchois-type Spectrometer: High-resolution Compton Scattering Experiments

Courtesy: Dr. Y. Sakurai, Spring-8

Formalism for obtaining electron density functions

Courtesy: Dr. Y. Sakurai, Spring-8

Population of eg-orbitals in bilayer manganites

La2-2xSr1+2xMn2O7

Koizumi et al. Phys. Rev. Lett. 86 (2001) 5589 Kakutani et al. J.Phys. Soc. Japan 72 (2003) 599

Experimental setup: beamline 08W, SPring-8

Magnetic Compton Scattering

Measurement of population of (x^2-y^2) and $(3z^2-r^2)$ of e_g orbitals in $La_{2-2x}Sr_{1+2x}Mn_2O_7$

(A. Koizumi, et al, Phys. Rev. Lett. 86 (2001) 5589.

FIG. 1. The magnetic Compton profiles along the [001] direction at x = 0.35. Left: Experimental data (diamonds) are shown with fit (solid line) using the MnO₆ cluster orbitals. Error bars indicate experimental statistical errors. Also shown are the t_{2g} orbital contribution (dashed line), the $e_{x^2-y^2}$ orbital contribution (dotted line), and the $e_{3z^2-r^2}$ orbital contribution (dot-dashed line). The spin density per site is 3.65, of which the contribution from t_{2g} is fixed to 3.0. The $e_{x^2-y^2}$ and $e_{3z^2-r^2}$ contributions are 0.46 and 0.19, respectively. Right: The same as the left panel but using the Mn⁴⁺ orbitals. The $e_{x^2-y^2}$ and $e_{3z^2-r^2}$ contributions are 0.90 and -0.25, respectively.

FIG. 2. The same as Fig. 1 but for x = 0.42. The spin density per site is 3.58, of which the contribution from t_{2g} is fixed to 3.0. The $e_{x^2-y^2}$ and $e_{3x^2-r^2}$ contributions are 0.44 and 0.14, respectively, for the MnO₆ fit (left), and 0.87 and -0.29, respectively, for the Mn⁴⁺ fit (right).

FIG. 3. Calculated magnetic Compton profiles of the t_{2g} , $e_{x^2-y^2}$, and $e_{3z^2-r^2}$ orbitals for the MnO₆ cluster (solid line) and by isolated Mn⁴⁺ (dashed line).

Near Future : 4GLS: the 4th Generation Light Sources

First generation:	Parasitic sources : SSRP-CHESS-HASYLAB-Daresbury LURE (1960-70's)
Second generation:	Dedicated sources, mostly from bending magnets NSLS, Photon Factory, SSRL,Super ACO, Aladdin
Third generation:	Dedicated, insertion device based, low emittance (nm-rad) ESRF, APS, Spring-8, SSRL-II, SLS, CLS, Diamond-SOLEIL
Fourth generation ?	Short pulse (fs), coherence, peak brightness ? Emittance ? All of the above ?

I believe the 4th generation sources will have to *"multi-furcate"* between time-resolved (fs) and imaging (coherent flux) vs. spectroscopy (flux) vs. size. The contenders:

- a) Linear coherent light sources based on SASE Free Electron Principle (SASE: Self-Amplified Spontaneous-Emission)
- b) Energy recovery LINAC
- c) Ultimate Storage Ring
- d) Compact sources: Inverse Compton Sources.

Thank you