Nanoscience – Photoemission 2 PEEM

Bruce C C Cowie Australian Synchrotron

Introduction

- Nanoscience
- Some techniques to study nanomaterials
- LEEM and PEEM
- Some Applications of PEEM
- Future

Nanoscience

- Nano Letters
- Since 2001 Pages published Annually increased 4 fold
- In 2007 pages > 3000+
- About 8 Journals have Nano in the title!

Nanoscience

- Why is it important?
 - Allows us to vary the properties of materials between atomic and bulk
 - Nanomaterials often have different physical properties
- What are the length scales for nanomaterials?
 - Often can be described as being in the range of countable numbers of atoms eg C_{60}
 - 1 Nanometre to 100's nanometres per particle
 - Not all dimensions have to be in nanometres!

What is the 'nanoscale'

• Dr Mark J. Biggs Institute for Materials and Processes University of Edinburgh

Brief History of Nano

- Richard Feynman
- There's plenty of room at the bottom (1959)
- Writing the Encyclopedia Britannica on a pin head
- Norio Taniguchi
- N. Taniguchi, "On the Basic Concept of 'Nano-Technology'," Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, Japan Society of Precision Engineering, 1974.
- semiconductor processing to make thin films and ion beam milling

• K. Eric Drexler

- - Molecular engineering: An approach ... (1981)
- Build from the Bottom up Nano assembler machines
- Michael Crichton Prey "grey goo"

The nanotechnology timeline NorthWestern University Part of DiscoverNano http://www.discovernano.northwestern.edu/whatis/History/ Must see site

Nano has Different Properties

Gold is gold - except when its nano gold

- Definition of Gold Merriam-Webster Dictionary
- • a yellow malleable ductile metallic element
- a variable color averaging deep yellow

Known for 1000's of years in glass making

 Michael Faraday, Philosophical Transactions of the Royal Society, London, <u>1857</u> Different sizes of colloidal gold particles

Trends Biotechnol. 2006 Feb;24(2):62-7. Epub 2005 Dec 27._

Therapeutic possibilities of plasmonically heated gold nanoparticles.

Pissuwan D, Valenzuela SM, Cortie MB.

Institute for Nanoscale Technology, University of Technology Sydney, Broadway NSW 2007, Australia.

Size Matters (at least for Semiconductors)

Bukowski, Tracie J. and Simmons, Joseph H. (2002) 'Quantum Dot Research: Current State and Future Prospects', Critical Reviews in Solid State and Materials Sciences, 27:3, 119 - 142

Applications of Quantum Dot markers

 Labeling Antibodies to Viral Proteins - Respiratory Virus

E. Bentzen et al Nano Lett., Vol. 5, No. 4, 2005

 Labeling Antibodies to Prostrate Cancer

Gao X, Cui Y, Levenson RM, Chung LW, Nie S. 2004. *In vivo* cancer targeting and imaging with semiconductor quantum dots. Nat Biotechnol 22(8):969–976.

New Material Properties

Material	Young's Modulus (GPa)	Tensile Strength (GPa)	Density (g/cm3)
Single wall nanotube	~800	>30	1.8
Multi wall nanotube	~800	>30	2.6
Diamond	1140	>20	3.52
Graphite	8	0.2	2.25
Steel	208	0.4	7.8
Wood	16	0.008	0.6

- Carbon Nanotubes
- Already being added to polymers to strengthen car bumpers (Toyota)
- Replacement for copper wire?

Cheiron2007

Carbon Nanotubes http://physicsweb.org/articles/world/11/1/9/1/world%2D11%2D1%2D9%2D6

Techniques for Nanoscience

• Scanning Tunnelling Microscope (STM)

http://www.research.ibm.com/atomic/nano/roomtemp.html

Problem with Scanning Probe systems

- Not element specific
 - You have to know what you are looking at
- Relatively slow
 - Operational temperature range

Small Angle X-ray Scattering Grazing Incidence SAXS

Surface science variant Grazing Incident (GISAXS)

Truncated pyramids

TEM images Ag/MgO(001), 300 K

C. Revenant et al. / Nucl. Instr. and Meth. in Phys. Res. B 246 (2006) 112–117

SAXS allows "realtime"

Photoemission Electron Microscope / Low Energy Electron Microscope

Photon generated Image Contrast

- Low energy secondary electrons
 - TV rate imaging

- Core level electrons
 - Chemical state determination
 - Slower scan rates 60 sec

S. Günther et al. / Progress in Surface Science 70 (2002) 187-260

PEEM3 ALS

SMART PEEM/LEEM BESSY

Aberration Correction

$$d = \sqrt{d_{\rm d}^2 + (d_{\rm s}/2)^2 + d_{\rm c}^2}$$

$$\begin{split} d_{\rm s} &= C_{\rm s} \sin^3 \alpha \\ d_{\rm c} &= C_{\rm c} \frac{\Delta E}{E_0} \sin \alpha \end{split}$$

$$d_{\rm d} = 0.61 \, \lambda / \sin \alpha$$

- PhD Thesis Helder Marchetto
 - Cheiron2007

Aberration Correction Electron Reflection Mirror

Lateral resolution in Leem after Aberration Correction

 Step edge Imaging on Au (111)
Electron Kinetic
Energy 18 eV

> PhD Thesis Helder Marchetto

Adsorption of PTCDA Ag(1 1 1)

• Nominal total deposition of 5 ML

Cheiron2007

H. Marchetto et al. / Chemical Physics 325 (2006) 178–184

Variable Polarization Contrast

 All layers are flat to the surface Including the multilayer islands

InAs Nanocrystals on GaAs(001)

Used SPELEEM at Elettra

Ge(Si) Nanostructures

Co 8nm particles on Silicon

 PEEM resolution 50 nm Individual particles have to be well spread out

A. Fraile Rodriguez et alJ. of Magn. and Mag. Mat. 316 (2007) 426–428

Commercial Instruments are the key to increased uptake

- Staib Instruments
- Omicron
- ELMITEC GmbH Aberration Compensated LEEM/PEEM
- SPECS

Future Aberration Corrected PEEM

- Spectroscopic measurements
 - NEXAFS is enough (ALS)
 - Micro XPS is a very useful addition
 - LEEM very useful for setting up aberration corrections for PEEM
 - 20 microns is fine with much higher transmission
- Only problem 10 years and counting since Aberration correction was first proposed!

