Imaging with Synchrotron Light

Chris Hall Monash University Melbourne, Australia

Imaging

What is an image?

■ **im·age** (mq j) *n.*

. %An optically formed duplicate or other representative reproduction of an object, especially an optical reproduction of an object formed by a lens or mirror.+

Digital image

- Nowadays most likely to be represented by a 2-D array of sample points (pixels) with orthogonal axes.
 - Images are often stored in a compressed form. When used for <u>realq</u> data this compression process must be lossless.

The EM spectrum

Images made with SR light are usually made with photons.

(In some cases electron images are made.)

SR light for imaging

Terahertz

- . 0.1 . 1 x 10^{12} hertz frequency
- . 1 mm . 15 microns wavelength
- . 0.001 eV . 0.08 eV

Infra-red

- . 0.5 . 1 x 10^{14} hertz frequency
- . 10. 1 microns wavelength (1000. 10,000 cm⁻¹)
- . 0.1 eV . 1.0 eV

SR light for imaging

Optical

- . Small range: 0.7 . 0.4 microns
- . 4x10¹⁴ . 7x10¹⁴ Hertz
- . 1.8 eV . 3.1 eV

Ultra violet

- . 0.4 . 0.05 microns (400 . 50 nm)
- . 7x10¹⁴ . 6x10¹⁵ Hertz
- . 3 eV . 25 eV

SR light for imaging

Soft x-rays

- . 50 . 0.4 nm
- . 6x10¹⁵ . 7x10¹⁷ Hertz
- . 25 eV . 3000 eV
- Hard x-rays
 - . 0.4 nm . 0.01 nm
 - . 7x10¹⁷ . 3x10¹⁹ Hertz
 - . 3,000 . 124,000 eV

Where does the synchrotron score?

It is a versatile and very bright source of light

Its characteristics are important for high fidelity imaging:

ÍFlux

ÉSpectral range and purity

ÉStability

ÉTime structure

ÍPolarisation

^{The imaging sciences (-ographies and . oscopies)}

- Crystallography
 - . Images in crystallography contain inverse spatial data.

How x-rays interact with electrons in matter

Rayleigh (coherent) scattering

No change in energy (wavelength, frequency)

Compton (incoherent) scattering

Change in energy (wavelength, frequency)

Photoelectric absorption

Scatter processes in biological tissue

The imaging sciences (-ographies and . oscopies)

Topography

- . Maps the intensity of a diffracted beam across the surface of a crystal.
- . Used to image strain and imperfections.

The imaging sciences (-ographies and . oscopies)

- Radiography
 - . The most straightforward x-ray imaging technique
 - . Images are shadowsqcontaining information about the absorption of the x-radiation by the object.

SR Radiography Using the SRS

Comparative X-Ray Brilliance

INTERMISSION

Computed tomography

U. Bonse, F. Busch, O. Gunnewig, F. Beckman, G. Delling, M. Hahn & A. Kvick

Projection and the Radon transform

Fourier slice theorem

 $g(\theta, S) = \iint f(x, y)\delta(x\sin(\theta) - y\cos(\theta) - s)dxdy$

If we take the FT and simplify

$$G(\theta, \omega) = \iint f(x, y) e^{-i\omega (x \sin \theta - y \cos \theta - s)} dx dy$$

This is the equation of a 1D FT of f(x,y) evaluated along a line at angle θ to the origin.

Fill the Fourier space from the project FTs

Filtered back projection

To regain f(x,y) from the Fourier space fill. Remember in general the inverse FT is:

$$f(x, y) = \frac{1}{4\pi^2} \iint F(u, v) e^{i(ux+vy)} dxdy$$

It will drop out that:
$$(x, y) = \frac{1}{4\pi^2} \iint G(\theta, \omega) e^{i(x\sin(\theta) - y\cos(\theta))} |w| dxdy$$

FBP in practice

Computed tomography

Modern multi-slice CT scanners give superb anatomical detail in 3-D images

Computed tomography

Wallabies lungs were imaged using SR CT at Spring 8.

An x-ray interferometer

Wallaby lungs in CT

How many people does it take to make a CT of a wallaby?

Fluorescence Tomography

Fluoresence Tomography

 $\text{CI } \textbf{K} \alpha$

KK α

Fe K $\!\alpha$

Rb K α

W. Schroder et al work done at ESRF

Vetinary imaging

Proposal for a BioMedical Imaging Beamline on the Canadian Light Source (BMIT).

Prof. Gregg Adams, University of Saskatchewan, Reproductive Science and Medicine Group.

Date: January 24, 2002 Supersedes: January 22, 2002

CONFIDENTIAL

Experimental approach The overriding goal is to develop synchrotron techniques for imaging ovarian structures in vivo. The bovine model of ovarian function is perhaps the best developed and most broadly applicable to animal and human studies; ultimately then, we wish to be able to obtain serial images of the ovaries of cows *in situ*. This raises the obvious challenge of physical size that has rendered conventional radiographic techniques useless for imaging the ovaries and related genitalia. Initially, however, we intend to

The imaging sciences (-ographies and . oscopies)

Coherent scatter imaging

. A map of the object from a particular scatter phase space forms the image.
Scatter fraction in different materials

CSCT at Philips in Hamburg

J-P. Schlomka, Philips Research, Hamburg.

J-P. Schlomka, Philips Research, Hamburg.

115 × 32 pixels
3 × 1.5 mm pitch
72 projections
1 sec / projection @
150kV, 30 mA
(2mm Al + 1mm Cu)

0.3mm slits

The imaging sciences (-ographies and . oscopies)

Microscopy (IR)

. IR microscopy with SR makes use of the qualities of the SR source with highly developed lab based instruments.

Comparison of normal epithelium IR spectrum with malignant tissue

Mark Tobin, Australian Synchrotron

FTIR Microspectroscopy of Malignant Tumour

Bright points show Bright points show Bright points show Bright points show Bright IR profile Bright Bright

Bright points show malignant IR profile

The imaging sciences (-ographies and . oscopies)

Microscopy (metavisible)

. The rapid repetition of the SR source flux is exploited in Fluorescence imaging.

Optical microscopy

Two techniques used: Fluorescence Resonant Energy Transfer (FRET) and Fluorescence Lifetime Imaging (FLIM)

Optical Microscopy - FRET

ÉOn excitation, a donor fluorophore emits fluorescence photons with a characteristic lifetime.

ÉThe close proximity (**5 to 10 nm**) of a second fluorophore (acceptor) with an absorption band which overlaps with the emission band of the donor leads to its excitation at a rate which is inversely proportional to the **sixth power** of the distance between them. ÉThe donor fluorescence and its lifetime are dependent on donor-acceptor distance. Measurement of the donor fluorescence lifetime, gives FRET data free of artifacts which may arise from measuring intensity.

Widefield time-domain FLIM

FLIM map (stretched

exponential fit)

1530 ps

τ

980 ps

Change in environment \Rightarrow *change in lifetime*

Courtesy Steven Webb, Daresbury Laboratory, s.e.d.webb@dl.ac.uk

FLIM - Applications

The imaging sciences (-ographies and . oscopies)

X-ray microscopy

- . At softqx-ray wavelengths fresnel optics can be used.
- . Harder x-ray lenses can be made using refraction.
- Why use an X-ray microscope?
 - . Specimen is fully hydrated in solution
 - . Specimen has high contrast without staining
 - . Resolution is (30 nm), greater than in light microscopy
 - . Specimen imaged at atmospheric pressure
 - . Specimen can be several microns thick (up to 10 µm)

X-ray Lenses

Zone plates

. nm tolerances. Restricted to Soft x-rays

Capillary lenses

. Manufacture difficult. Long focal length

Refractive lenses (CRL)

. Refractive index ~1-10⁻⁶

Zone plates

Courtesy KTH, Stockholm, Sweden

X-Ray Microscopy

X-ray microscope at the ALS

X-ray Micro CT

INTERMISSION

Using SR light characteristics

Coherence

- . The coherence length is less than a micron on older sources but at third generation sources gets up to 100¢ of microns.
- . This opens up potentials for several coherence imaging techniques.

Refractive Index at X-ray Wavelengths

Phase contrast imaging

$$T_c = \frac{\lambda}{2\alpha} \quad L_c = \frac{\lambda^2}{\Delta\lambda}$$

- T_c =Transverse coherence length L_c =Longitudinal coherence length
 - = wavelength, =source divergence

Phase contrast imaging in x-rays

Two images of a hollow sphere consisting of two different polymer layers. In image a), recorded at a sample-detector distance of 19 cm and representative of the edgedetection regime, the borders are revealed by white-black contrast.

In image b), recorded at a distance of 3 metres and representative of the holographic regime, many interference fringes are observed

Courtesy ESRF ID19

Phase contrast imaging techniques

So far:

- Interferometry . Phase directly
- Analyser based imaging . Gradient of the phase (differential ∇φ)
- Propagation based imaging . Laplacian of the phase (second order differential $\nabla^2 \phi$).

Analyser Based Imaging (ABI)

Analyser Crystal Rocking Curve

Beamline Camera

-ve Side of Rocking Curve

Diffraction Enhanced Imaging (DEI)

Mouse Liver Peak

Mouse Liver Refraction

Human Finger

Conventional

Peak of Analyser

Refraction

Propagation Based Phase Contrast Imaging (PBI)

Propagation Based Imaging (PBI)

147cm
Why do PBI of the lung?

Imaging Setup

Beamline 20B2, Spring-8, Japan. 25 keV beam of highly coherent radiation.

Courtesy Dr. Marcus Kitchen, Monash University

Laue analyser crystal

100 μm thick Si(1,-1,0) surface-cut designed for 25 keV X-ray beam.

Diffracted Image - Corrected

Transmitted Image

Rocking Curves and their Ratio

Exp=0.3 s, Int=2 s, 20 fps

Refraction Angle Image

Apparent Absorption Image

Coherent X-ray Diffractive Imaging

See for example the work by J. Miao, K. Nugent et al

Detectors for SR Imaging

Electronic imaging detectors

- . Direct conversion . photons go straight to electrons.
- . Indirect conversion . photons converted to other photons before converting to electrons.

Detectors for SR Imaging

Analogue detectors

- . Films
- . Film-screen systems
- . Nuclear emulsions

CCDs 62mm ППППП

Although sizes > 50mm are available, the read speed is slow to preserve low noise and cte (line capacitance becomes very high)

Shutter required

CCD detectors

CMOS Imagers

- Based on standard manufacturing technology
 - . Electronics integrated onto same chip as image sensor
 - . Gd₂O₂S Kodak Lanex[®] Fine
- Rad Eye 1 from Radicon
 - . 1024x512 48 micron pixels
 - . 24.6 x 49.2 mm^2 active area
 - . MTF good to 10 lp/mm
 - . Tileable on 3 sides
 - . Dark current ~4000e⁻/s = 10 x CCD room temp
 - . 10000:1 dynamic range
 - . 4.5 frames/s

CMOS Imagers

(c) 2002 Rad-icon Imaging Corp.

10 cm by 10 cm, 50 micron pixels

Rad-icon Imaging Corp 3193 Belick Street, Unit 1, Santa Clara, CA 95054

Detector Categories

Integrating

Measures deposited energy at end of integration period

☑ High input flux capability

Read noise dominates at low signal (% og level+)

Dead time between frames

 $\blacksquare 2 \times 15 \text{ keV photons} = 1 \times 30 \text{keV photon}$

Almost all medical imaging detectors

Photon Counting

Detects every photon as it arrives ☑Quantum limited

 \square No dead time between frames

☑ Measures position and energy

ELimited input flux capability

Proportional counters, Scintillation counters

Integrating versus Counting

Integrating

Counting

Bottom image 0-10 phts/pix

Courtesy XCounter AB, Sweden

The End

'Why,' said the Dodo, 'the best way to explain it is to do it.' *Lewis Carroll*