Detectors for Synchrotron Radiation

Chris Hall Monash University

Cheiron Synchrotron Summer School

Factors Limiting Science

A Scientist's View of the Detector

The Truth!

Detection Mechanisms

Photons in...

- Gas ionisation
 - Detect the electrons and ions
 - E.g. Ion chambers, proportional counters
- Photoelectric effect
 - Detect the electrons or measure current
 - E.g.. CsI photocathodes in image intensifiers
- Generation of electron hole pairs
 - Detect the electrons and holes
 - E.g.. Semiconductor detectors
- Fluorescence or scintillation including the creation of F centres
 - Measure the light
 - E.g. Image plates, Scintillation counters
- Chemical
 - Measure the absorption of light
 - E.g. Film

...out

The Ionisation Chamber

- Very simple device
- 1 e⁻ ion pair per 30eV of energy deposited
- Bias Important that recombination is low as possible
 - Higher voltages required at higher rates since more carriers
 - Diffusion losses caused by separation of carriers minimised by higher voltages
 - Ion chambers are sensitive pressure and temperature

Field Variation

Avalanche & Proportional Counter

Gas Fillings

Primary Gas

- Minimal electron attachment coefficient. (No air).
- High electron drift velocity

Argon, Krypton, Xenon

- Quench Gas
 - High UV absorption cross section

– For SR it should not crack

Polyatomic, organic molecules. CH₄, CO₂

Microstrip Variants

Efficiencies

Photomultipliers & Scintillators

Channeltron is a similar with distributed dynode

Micro-channel plates are mutlichannel channeltrons with each channel being an electron multiplier.

TV detector with IIT

Response to Uniform Illumination

ESRF TV Detector Thompson IIT & CCD

Spatial distortion

ESRF Image intensifier detector

Computed Radiography-Image Plates

X-Y Flat bed Scanner

Distributed Light Collection

IPlate Single Peak PSF

Dark Signals & Fog

Integrating Detectors

Mode

- Measures deposited energy at end of integration period
- Characteristics
 - High input flux capability
 - Read noise dominates at low signal ("fog level")
 - Dead time between frames
 - 2×20 keV phts = 1×40 keV photon i.e. Cannot perform simultaneous spectroscopy and positioning
 - Examples: Image plates, CCDs

Photon Counting Detectors

Mode

- Detects every photon as it arrives. Only active pixels read
- Characteristics
 - Quantum limited, Detector noise often negligible
 - No dead time between frames
 - Can measure position and energy simultaneously
 - Limited input flux capability
 - Examples: Prop counters, Scintillators

Collagen 0.3s Exposure

Counting & Integrating 1.5 1 0.5 Signal 0 -0.5 1 6 5 Counting Integrating Accumulated Signal 3 (Photons) 2 1 0 Time -1 ≻

Signal Levels

	Energy per electron hole pair, w (eV)	Stage 1 signal @ 10keV	Stage 2 Transfer to electron gain	Minimum N @ 10keV	Stage n 0 noise gain	Signal e⁻
Gas Ionisation						
Argon	24.4	410e-	1	410	10 ⁵	4×10 ⁷
Xenon	20.8	481e ⁻	1	481	5×10 ⁴	2.4×10 ⁷
Solid State						
Silicon	3.62	2760e-	1	2760	1	2.8×10 ³
Germanium	2.96	3380e-	1	3380	1	3.4×10 ³
Fluorescence or scintillation						
Nal(TI) + PMT		266 photons	0.1	30	10 ⁵	3×10 ⁶
$Gd_2O_2S + IIT$		500 photons	0.04	20	104	2×10 ⁵
BaFBr:Eu ²⁺		75 F centres	0.07	5	10 ⁵	5×10 ⁵

Spectral Resolution

- Average number of carriers, N = E/w where w is energy to create electron hole/ion pair
- Poisson statistics: $\sigma = 1/\sqrt{N}$
- $\Delta E/E = 2.355\sigma = 2.355(E/w)^{-\frac{1}{2}} = 2.355(w/E)^{\frac{1}{2}}$
- For Ge, w= 3eV so at 10keV $\Delta E/E = 4\%$ For Ar, w= 25eV so at 10keV $\Delta E/E = 12\%$

Fano Factor

- If all energy from photon or particle were converted into electrons there would be no variance.
- If a random portion of the photon energy were converted there would be no energy resolution.
- Reality is in between these extremes so introduce fudge factor called the Fano factor F
- Observed relative variance = F x Poisson relative variance.

Amplification

- In almost all cases we require some form of amplification
- Interaction of pre amplifier with detector is critical for performance of system
- Most important element is the input, often a FET
- Noise is the major issue
 - Thermal or Johnson Noise
 - Brownian motion of electrons
 - No current flow required

- Shot Noise
 - Fluctuations in current

$$\bar{i}^2 = 2q_e \bar{I} df$$

- Voltage mode
 - Output α input voltage
 - Effect of R_f dominates C_f
- Current mode
 - Output α input current
 - Low input impedance
- Charge mode
 - Output α input charge
 - C_f dominates R_f

Equivalent Noise Charge

- Low noise is no use if signal is low
- Introduce ENC which is that signal charge that will produce the same output as the RMS noise

Where

- k = Boltzman's constant
- T = temperature
- e = the electronic charge
 - R_g = Load resistance and/or feedback resistance
 - $g_{m}^{"}$ = transconductance of input FET. (Links current in to voltage out)
- $\blacksquare \quad \tau \quad = \text{ Rise time of amplifier}$
- C_{in} = input / stray and feedback capacitance
- Note that ENC is directly related to energy resolution
- FWHM(keV) = 2.355×10^{-3} ENC/ew where w is the energy per electron

Noise Dependence

$\blacksquare \tau$ optimum at

- Choosing optimum τ gives best noise performance but may not be fast enough
- We often have to sacrifice energy resolution for speed

Optimum τ

- \blacksquare R_g as large as possible ~ 10¹⁰ Ω
- I_D (leakage) as small as possible
 - For Ge cooling is vital
- Low T is good
- C_{in} as small as possible (note that this includes C_f)
- g_m as large as possible but this affects C_{in}

Optimum Spectral Resolution

- Low capacitance
 - Small planar < 1pF
- Low leakage currents
- Maximise R_g and/or R_f
 - Remove altogether so $R_f = \infty$
- Use optical reset
- Can improve FWHM by 20%

Shannon's Theorem or Nyquist Criterion

- If the input is not band limited to frequencies less than ωs/2, then aliasing will occurs at frequencies ω1±n where;
- $\omega 1 = original signal frequency, \omega s = sampling frequency, n = an integer$

- The highest frequency that can be measured is twice the sampling frequency
- If you have 100μm pixels, ideal PSF > 200μm

Performance Measure - DQE

Perfect detector

Real detector

Can define N_{photons} that describes real SNR

Ratio of this to N_{inc} is a measure of efficiency

Note that DQE is f(spatial and spectral frequencies)

Effect of Peak Width

DQE Comparison

Synchrotron Detectors

- A synchrotron source is used primarily when sensitivity is an issue
 - Signal too weak
 - Time resolution too poor
 - Sample too small
- More intensity can help this but...
- It places a major strain on detectors and Flux is a major issue!

Ion Mobilities

Gas	Ions	Mobility (cm ² V ⁻¹ s ⁻¹)
Ar	$(OCH_3)_2 CH_2^+$	1.51
Iso $C_4 H_{10}$	$(OCH_3)_2 CH_2^+$	0.55
$(OCH_3)_2 CH_2$	$(OCH_3)_2 CH_2^+$	0.26
Ar	Iso $C_4 H_{10}^+$	1.56
Iso $C_4 H_{10}$	Iso $C_4 H_{10}^+$	0.61
Ar	$\mathrm{CH_4}^+$	1.87
CH ₄	CH_4^+	2.26
Ar	\rm{CO}_2^+	1.72
CO ₂	CO_2^+	1.09
Ar	electrons	~1000

For 1 kV across 1cm. Electrons take 1µs

lons take ~1ms!

Spectral Peak Shift vs Rate

EDR Detector for Powder Diffraction

Readout Strategies

Imaging

- Massively parallel
 - Position derived from individual pixel
 - Highly parallel: 2000×2000 pixels = 4 million channels!!!
 - Suitable for counting and integrating systems
 - Pixel array detectors
- X-Y Interpolating
 - Position derived from measuring signals
 - Moderately parallel: 2000×2000 pixels from few hundred channels
 - Only suitable for counting systems
 - MWPCs e.g. RAPID
- Sequential
 - Position derived from point in sequence
 - Not really parallel
 - Only really suitable for integrating systems
 - CCDs, Image plates
- Spectroscopic
 - Can only add more channels for speed

RAPID 1 System

Charge Distribution (Cathodes)

RAPID Data Acquisition System

Probabilities of Event Overlap $\Delta t=7.7$ ns

2 Axis X-Y Detector

Deadtime Correction

Low Rate Image 3 MHz Raw Image Corrected 3MHz Image

Time Framing

Collagen 1s exposure 16.1

Image Plate No attenuation

Delay Line 8.7 x attenuation

RAPID No attenuation

Collagen 100ms exposure 16.1

Image Plate No attenuation

Delay Line 8.7 x attenuation

RAPID No attenuation

Background Removal

Background Removal

Parallax Broadening

Parallax Effect

Image Plate

Gas Proportional Counter

Lysosyme pattern on two detectors

Daresbury High Pressure MWPC

Force on 28 x 28 cm window at 5 bar = 4 tonnes Force on window of 1 x 1 cm at 5 bar = 5 kg

RAPID2 SAX WAX

WAXS detector - GMSD

GMSD for electron yield

CCD Readout

Photons in

section

CCD Readout

- Charge is moved from pixel to pixel by clocking
- Each pixel has a limited capacitance (well depth) typically 10⁴-10⁵ e⁻
- This limits dynamic range for direct detection
- Speed of clocking is restricted by line capacitance and charge transfer efficiency
 - Size of CCD restricted by this
- Noise can be reduced by cooling
- Amplifier usually on chip
 - Heats up that part of chip

CCDs

Although sizes > 50mm are available, the read speed is slow to preserve low noise and cte (line capacitance becomes very high) Shutter required

CCD detectors

Gaps

Spec	0.2mm max
Worst gap	2.97mm
Pixels in gaps	513922 5.45%

Dark Currents

Flat and Dark Correction

For each image, two correction images must be recorded.

1. A flat field (uniform illumination of the detector)

2. A dark image (no irradiation of detector)

Both must be recorded with the same exposure time as the original image since dark current is a function of exposure time.

Then apply the following correction

Number failing 2 measurements 5-2000s

Mean	44764	0.47%	
Min	40822	0.43%	
Max	48706	0.52%	
nb. 14300 pixels not common to both			

Subtraction of dark images

Geometric Distortion

Overlaps

Graded Absorber Comparison

Mar Image Plate

ESRF-Thompson IIT / CCD

Daresbury MWPC

Detector noise level comparison

a-Si:H Array dpiX - Flashscan 30

a-Si:H TFT arrays

dpiX Flashscan 30 PaxScan 4030

Flashscan 30 - Performance

Mar Image Plate

Flashscan-30

 $t_{int}=30s$

 $t_{int} = 190s$

Flashscan 30 - Image Lag

Multi Channel Spectoscopic Detectors

Canberra Ultra-LEGe detector

WRULEAD (Windowless, Retractable, Ultra Low Energy Array Detector) works down to 300eV

Multichannel devices up to 30 channels at 3×10^5 cts s⁻¹ channel⁻¹ have been built

Pixel Detector

- Photon counting at GHz rates
- Simultaneous imaging and spectroscopy
- Single-pixel PSF
- Low noise
- Large area coverage
- Customised to each experiment

- Square pixels of 170µm sidelength
- 64 x 64 pixels per chip
- Sensitive to positive charge
- Leakage current compensation at the input
- Maximum count rate: ~2 MHz
- 1 comparator per pixel with 3 bits fine tuning
- Minimum threshold ~1500e⁻(~5.5 keV deposition in a Si sensor)
- 15 bit counter per pixel (32767) single events
- Variable acquisition time
- Read-out time: 384µs @ 10 MHz
- Active area of the chip: ~1.2 cm²

http://medipix.web.cern.ch/MEDIPIX/

Sardine

- Mo X-ray tube + 30 µm Mo filter 25 kV, 10 mAs,
- Detector stepped for one detector width in X and half a detector width in Y
- Acquisition time per image: 500 ms.
- No image correction was used (raw data!).
- The thickness of the fish bones corresponds roughly to the pixel size.

P. Seller RAL

PILATUS Detector with 3 Modules

- Pixel size: <200×200µm2</p>
- Dead area ~6%
- High frame rate: >10Hz
- High duty cycle: <3% (Tro<3ms)</p>
- 3 Module Prototype
- Area: 238.7 x 35.3 mm²
- 157×1098 = 172386 pixels
- 48 chips (radiation hard)
- 2.38mm gap between modules
- Readout-time: 5 ms
- Energy Range: E.g. >4 keV
- XY-addressing of each pixel
- Threshold adjust of each pixel
- Analog signal of each pixel

Lysozyme PILATUS

- 1° rotation
- 2s exposure,
- E=12 keV
- 7 detector positions
- Flatfield corrected

Radiation Damage (Medipix)

- Damage occurred at 40Gy or 1.3×10¹⁰pht/mm² in the readout chip
- At 13 keV photon energy
 - Strong diffraction spots typically 10⁵ phts/s or 10⁶ phts/mm2/s
 - Damage requires ~ 8hours exposure
 - Direct beam (10¹⁰–10¹³ photons/mm²/s)
 Damage in less than a second.

Counting Pixel Detector Problems

- High power consumption
 - Cooling
- Number of connections
 - Multiplexing
 - Read out time significant
- Limited number of bits in counter
 - Dynamic range issues for diffraction
 - 15bits @ 1Mcps input rate = 30ms frame
 - Read time can be significant
 - Fast read > high power
- Technology not yet good enough for microsecond framing

Cornell PAD (Integrating)

- Rapid Framing Imager
 - 15×13.8mm² active area
 - 150µm square pixel
 - Storage for 8 frames
 - Selectable T_{int} down to 1µs
 - Deadtime < 1µs

+60V

Sol Gruner, Cornell

Diesel Fuel Injection Movie

- Injection
 - Supersonic injection 1350psi Cerium added
 - Chamber 1atm SF₆
 - 10⁸-10⁹ X-rays/s/pix (6keV)
 - 1.1ms Pulse

- Movie
 - Length
 - Frame length
 - Dead time

- 1.3ms
- 5.13µs
- 2.56µs / frame
- 168 frames (21 groups of 8)
- Average 20× to improve S/N
- Sequence

5×10⁴ images

A. MacPhee et al, Science (2002) 295, 1761-1763

Pixel Detectors: The Problems

- Large silicon fab requirements
- A lot of infrastructure required
- Radiation damage
- Long iteration times
- Poor stopping power of silicon
- Counting and fast framing not yet possible
- Expensive NRE

SPring-8 128 channel Ge strip

Ge

- 55.5×50.5×6mm
- Strips
 - Number 128
 - Width 300µm
 - Interstrip 50µm
 - Length 5mm
- Readout
 - Single channel 100ns
 - 32 channels 3.2ms
- Max expected count rate
 - 14kcps

SPring-8 Ge strip detector

Compton Spectrum of Nb

Detector Considerations

- Detection Efficiency
- Intensity Measurement
 - Dynamic Range
 - Linearity of Response
 - Uniformity of Response
 - Stability
- Spatial Measurement
 - Spatial Resolution
 - Spatial Distortion
 - Parallax

- Energy Measurement
 - Spectral Resolution
 - Linearity of Response
 - Uniformity of Response
 - Stability
- Time Measurement
 - Frame Rate
 - Photon Time Resolution
- Others
 - Size and weight
 - Cost

Defining Characteristic?

Is there a defining characteristic of X-ray detectors for synchrotron radiation?

Astronomy

- Sensitivity

- High Energy Physics
 - 3D tracking, multi-technique and huge

Medical Imaging

– Large area, low cost

Defining Characteristic

- Defining characteristic
 - Flux capability (count rate)
- Sensitivity (neglected)
- Gulf between modern SR fluxes and detector capabilities is huge
- Repeatedly stated
 - SRI 1991, plenary address Mike Hart
 - The division of funding between source, optics and detectors seems to be seriously out of balance. Neither optics nor detectors can fully meet the experimental requirements of even second generation bending magnet sources
 - Fluxes from 3rd generation insertion devices are 1000 times higher!!
- Defining characteristic
 - Lack of resources

Funding Comparison

- Chandra X-ray Telescope
 - Total budget US\$2.8b
 - Detector work began **15 years** before launch!!
 - 2 detectors, each budget ~US\$50M
- Linear colliders
 - Budget US\$Vast/huge/enormous
 - Detector work began **12 years** before operation!!
 - One small part of detector budget CCDs US\$10M
- DIAMOND synchrotron
 - Total budget £350M
 - Detector work not started, planned 1.5 years before ops. In 2005/6/7
 - 20 detectors, each budget £200k

Tortoise and Hare?

- Accelerators currently 10¹³-10¹⁴ photons to sample
- New machines e.g. LCLS, TESLA
 - 10²⁵ photons to sample!!!
- Detectors
 - Currently 107-108
 - In 10 years.....
- Hare shows no sign of slowing down
- Tortoise is not catching up

References

- Delaney CFG and Finch EC
 - Radiation detectors. Physical Principles and Applications, Clarendon Press, Oxford 1992, ISBN 0 19 853923 1
- Knoll GE
 - Radiation Detection and Measurement, John Wiley and Sons 3rd edition, 2000
- Proceedings of the 7th International Conference on position sensitive detectors
 - Nuclear Instruments and Methods in Physics Research A573 (2007)
- IEEE Nuclear Science Symposia