

Small Angle X-ray Scattering and Applications in Structural Analysis

Moonhor Ree

Deputy Director of Pohang Accelerator Laboratory (PAL) Professor of Chemistry Department and Polymer Research Institute Pohang University of Science & Technology (POSTECH) Pohang, Korea Tel: +82-54-279-2120; Fax: +82-54-279-3399 E-mail: ree@postech.edu http://www.postech.ac.kr/chem/mree http://pal.postech.ac.kr

Outline

- **1. Introduction POSTECH & Pohang Light Source**
- 2. Optics, Beamlines and Equipments of SAXS
- **3. Data Collection and Samples**
- 4. Fundamentals of SAXS
- 5. Fundamentals of Conventional, Transmission SAXS (TSAXS)
 - (1) Single Molecule (or Particle)
 - (2) Multiple Molecules (or Particles) and Their Assemblies
- 6. Fundamentals of Grazing Incidence SAXS (GISAXS)
 - (1) Static GISAXS
 - (2) In-Situ GISAXS
- 1. Conclusions I, II
- 2. References
- 3. Introduction M. Ree's Group at Postech
- 4. Acknowledgments

SEPTEMBER 2007

PLS Beamline Status

M. Ree et al., Phys. High Tech.(Korea), 14(3-4), 2-7 (2005) Polymer Synthesis and Physics Laboratory 6

Outline

1. Introduction – POSTECH & Pohang Light Source

2. Optics, Beamlines and Equipments of SAXS

- **3. Data Collection and Samples**
- 4. Fundamentals of SAXS
- 5. Fundamentals of Conventional, Transmission SAXS (TSAXS)
 - (1) Single Molecule (or Particle)
 - (2) Multiple Molecules (or Particles) and Their Assemblies
- 6. Fundamentals of Grazing Incidence SAXS (GISAXS)
 - (1) Static GISAXS
 - (2) In-Situ GISAXS
- 1. Conclusions I, II
- 2. References
- 3. Introduction M. Ree's Group at Postech
- 4. Acknowledgments

Optics of Small Angle X-ray Scattering (SAXS)

SAXS Beamlines

X-rays at the sample

• Photon flux (monochoromatic, focusing) :

 $10^{11} - 10^{18}$ photons/sec/mm² at 8 keV

• Beam size : $< 0.8 \times 0.8 \text{ mm}^2$

2-D CCD X-Ray Detector

Roper Scientific

MAR research

Device for Temperature Jumping

11

Other Devices for Samples

- **1. Mechanical Tester**
- 2. Rheometer
- **3. DSC**
- 4. Liquid Cell
- 5. Liquid Flow Cell
- 6. Fiber Spinner
- 7. Magnets
- 8. Many Other Devices

depending on what you want

Outline

- **1. Introduction POSTECH & Pohang Light Source**
- 2. Optics, Beamlines and Equipments of SAXS

3. Data Collection and Samples

- 4. Fundamentals of SAXS
- 5. Fundamentals of Conventional, Transmission SAXS (TSAXS)
 - (1) Single Molecule (or Particle)
 - (2) Multiple Molecules (or Particles) and Their Assemblies
- 6. Fundamentals of Grazing Incidence SAXS (GISAXS)
 - (1) Static GISAXS
 - (2) In-Situ GISAXS
- 1. Conclusions I, II
- 2. References
- 3. Introduction M. Ree's Group at Postech
- 4. Acknowledgments

Data Collection Time and Sample Thickness (Volume) in SAXS Measurements

14

Optimization of Collection Time (Error Analysis)

Figure 6-12 Randomly spaced voltage pulses produced by a detector.

Poisson distribution

$$P(N) = \frac{(nt)^{N} e^{-nt}}{N!}$$
 nt: average value
$$P(N) = \frac{(nt)^{N} e^{-nt}}{N!}$$
 nt: average value
$$P(N) ; probability of having N count in a given time t$$

$$\pm \frac{\sqrt{N}}{N}$$

Relative error possessed in the count N

number of pulses counted	standard deviation (%)	collection time (sec)
1,000	3.2	1
10,000	1.0	10
100,000	0.3	100

Optimum Sample Thickness (transmission geometry)

t, μ : Thickness, Linear Absorption Coefficient

$$I_{obs}(s) \sim t \cdot e^{-\mu t}$$

$$t_{opt} = \frac{1}{\mu}$$

Outline

- **1. Introduction POSTECH & Pohang Light Source**
- 2. Optics, Beamlines and Equipments of SAXS
- **3. Data Collection and Samples**

4. Fundamentals of SAXS

- 5. Fundamentals of Conventional, Transmission SAXS (TSAXS)
 - (1) Single Molecule (or Particle)
 - (2) Multiple Molecules (or Particles) and Their Assemblies
- 6. Fundamentals of Grazing Incidence SAXS (GISAXS)
 - (1) Static GISAXS
 - (2) In-Situ GISAXS
- 1. Conclusions I, II
- 2. References
- 3. Introduction M. Ree's Group at Postech
- 4. Acknowledgments

Fundamentals of Small Angle X-ray Scattering (SAXS)

Outline

- **1. Introduction POSTECH & Pohang Light Source**
- 2. Optics, Beamlines and Equipments of SAXS
- **3. Data Collection and Samples**
- 4. Fundamentals of SAXS
- 5. Fundamentals of Conventional, Transmission SAXS (TSAXS)

(1) Single Molecule (or Particle)

- (2) Multiple Molecules (or Particles) and Their Assemblies
- 6. Fundamentals of Grazing Incidence SAXS (GISAXS)
 - (1) Static GISAXS
 - (2) In-Situ GISAXS
- 1. Conclusions I, II
- 2. References
- 3. Introduction M. Ree's Group at Postech
- 4. Acknowledgments

Fundamentals: Conventional Small Angle X-ray Scattering (SAXS) Transmission Small Angle X-ray Scattering (TSAXS)

20

Length Scales in Structure

Polymer Synthesis and Physics Laboratory

PAL

Hierarchical Structure of Polymer Crystals

X-Ray Scattering from Single Molecule (or Particle)

X-Ray Scattering from One Molecule (Particle)

Polymer Synthesis and Physics Laboratory

LOW FREQUENCY (Rayleigh) CASE,
$$\omega \ll \omega_0 \rightarrow \text{Light scattering}$$

 $\alpha = e^2 / k$
HIGH FREQUENCY (Thomson) CASE, $\omega \gg \omega_0 \rightarrow X$ -Ray scattering
 $\alpha = e^2 / m\omega^2$

It is independent of k and decreases with ω . (because ω is very high.)

e : charge of an electronk : force constantm : mass of an electron

Scattering vector

Scattering vector

$$\mathbf{s_o} = \mathbf{e}_z, \quad \mathbf{s_1} = \mathbf{e}_y \sin 2\theta + \mathbf{e}_z \cos 2\theta$$
$$\mathbf{s} = \mathbf{s_o} - \mathbf{s_1} = \left[\mathbf{e}_z(1 - \cos 2\theta) - \mathbf{e}_y \sin 2\theta\right]$$
$$k = 2\pi/\lambda \quad \text{Wave number (modulus of wave vector)}$$
$$\mathbf{s} = \left|\mathbf{s}\right| = \left[\left(1 - \cos 2\theta\right)^2 + \sin^2 2\theta\right]^{1/2} = 2\sin\theta$$
$$\mathbf{q} = k \, \mathbf{s} \qquad q = k \, \mathbf{s} = \frac{4\pi}{\lambda} \sin\theta$$

$$\begin{array}{c} 0 \\ y \\ q \\ q \\ q \\ s_{0} \\ q \\ q \\ s_{0} \\ s_$$

Bragg's eq.: lattice spacing *d*

$$2d\sin\theta = n\lambda(n=1,2,3...) \Rightarrow d = \frac{n\lambda}{2\sin\theta} = \frac{2\pi}{q}(n=1)$$

The phase difference δ , from O and P is equal to the inner vector product, q.r.

$$\delta = \frac{2\pi}{\lambda} (QP - OR) = \frac{2\pi}{\lambda} (\mathbf{s_0} \cdot \mathbf{r} - \mathbf{s_1} \cdot \mathbf{r}) = \mathbf{q} \cdot \mathbf{r}$$
POSTECH
Polymer Synthesis and Physics Laboratory

26

Phase Factor $\delta = \mathbf{q} \cdot \mathbf{r}$

$$E_{s} = \frac{-\alpha \omega^{2} E_{o} e^{i\omega t}}{c^{2} r} \cos \Psi$$

$$E_{s} = \frac{-\omega^{2} E_{o} e^{i\omega t}}{c^{2} r} \cos \Psi \sum_{i} \alpha_{i} e^{-ikx_{i}}$$

$$F = \sum_{i} \rho_{i} e^{-ikx_{i}}$$

$$F(\mathbf{r}_{i}) = \sum_{i} \rho_{i} e^{-i(\mathbf{q} \cdot \mathbf{r}_{i})}$$

$$E_{s} = K_{s} F(\mathbf{r}_{i})$$

$$K_{s} = \frac{-\omega^{2} E_{o} e^{i\omega t}}{c^{2} r} \cos \Psi$$

$$I_{s} = E_{s} \cdot E_{s}^{*}$$

$$I_{s} = K_{s} \{F(\mathbf{r}_{i}) \cdot F^{*}(\mathbf{r}_{i})\}$$

$$I_{s} : S$$

POSTECH Polymer Synthesis and Physics Laboratory F: Form Factor

*I*_s : Scattering Intensity

$$F(\mathbf{r}_{i}) = \sum_{i} \rho_{i}(\mathbf{r}_{i})e^{-i(\mathbf{q}\cdot\mathbf{r}_{i})}$$

$$F(\mathbf{r}_{j}) = \sum_{j} \rho_{j}(\mathbf{r}_{j})e^{-i(\mathbf{q}\cdot\mathbf{r}_{j})}$$

$$P(\mathbf{r}_{j}) = \rho_{o} + \Delta\rho_{i}$$

$$F(\mathbf{r}_{j}) = \sum_{j} \rho_{j}(\mathbf{r}_{j})e^{-i(\mathbf{q}\cdot\mathbf{r}_{j})}$$

$$P(\mathbf{r}_{j}) = \rho_{o} + \Delta\rho_{i}$$

$$P(\mathbf{r}_{j}) = \sum_{j} \rho_{j}(\mathbf{r}_{j})e^{-i(\mathbf{q}\cdot\mathbf{r}_{j})}$$

$$P(\mathbf{r}_{j}) = \rho_{o} + \Delta\rho_{i}$$

$$P(\mathbf{r}_{j}) = \sum_{j} \rho_{j}(\mathbf{r}_{j})e^{-i(\mathbf{q}\cdot\mathbf{r}_{j})}$$

$$P(\mathbf{r}_{j}) = \rho_{o} + \Delta\rho_{i}$$

$$P(\mathbf{r}_{j}) = \sum_{j} \rho_{j}(\mathbf{r}_{j})e^{-i(\mathbf{q}\cdot\mathbf{r}_{j})}$$

$$P(\mathbf{r}_{j}) = \rho_{o} + \Delta\rho_{i}$$

$$P(\mathbf{r}_{j}) = \rho_{o} + \Delta\rho_{i} + \rho_{o} + \Delta\rho_{i} + \Delta$$

(a generalized scattering equation) 28

Structure analysis by Scattering and Concept of Real and Reciprocal Spaces

$$I_{s}(\mathbf{q}) = K_{s} \sum_{i} \sum_{j} \Delta \rho_{i}(\mathbf{r}) \Delta \rho_{j}(\mathbf{r}) e^{-i(\mathbf{q} \cdot \mathbf{r})}$$
$$I(\mathbf{q}) = K_{s} [F(\mathbf{r}) \cdot F^{*}(\mathbf{r}')]$$
Correlation function
$$\gamma(\mathbf{r})$$

(1) Correlation Function Approach

- Correlation function $\gamma(\mathbf{r})$

(2) Fine Structural Model Approach

- sphere
- Gaussian sphere
- core/shell sphere
- rod
- cylinder
- disc

etc

Auto-Correlation Function $\gamma(\mathbf{r})$ (Patterson Function)

$$\gamma(\mathbf{r}) = \frac{\Delta \rho(\mathbf{r}) * \Delta \rho(-\mathbf{r})}{\int_0^\infty [\Delta \rho(\mathbf{r})]^2 d\mathbf{r}} = \frac{\int_0^\infty \Delta \rho(\mathbf{u}) \Delta \rho(\mathbf{r} + \mathbf{u}) d\mathbf{u}}{\int_0^\infty \Delta \rho(\mathbf{u}) \Delta \rho(\mathbf{u}) d\mathbf{u}}$$

$$\gamma(\mathbf{r}) = \Im^{-1} \{ I_{obs}(\mathbf{q}) \} \cdot \frac{l}{\langle (\Delta \rho)^2 \rangle V} \qquad \Delta \rho(\mathbf{r}) = \rho(\mathbf{r}) - \rho_0$$

For an isotropic system
$$|\mathbf{q}| = q$$
, $|\mathbf{r}| = r$
 $\gamma(r) = \mathfrak{T}^{-1} \left\{ I_{obs}(q) \right\} \frac{1}{\left\langle \left\{ \Delta \rho(u) \right\}^2 \right\rangle V} = \frac{\int q^2 I_{obs}(q) \frac{\sin qr}{qr} dq}{\int q^2 I_{obs}(q) dq}$

Pair Distance Distribution Function (PDDF) $p(r) = r^2 \gamma(r)$

Correlation function *versus* **Scattering intensity**

Density distribution

POSTECH Polymer Synthesis and Physics Laboratory

Patterson Function

$$I(\mathbf{q}) = \Im\{Q(\mathbf{q})\} \qquad Q(\mathbf{r}) = \Im^{-1}\{I(\mathbf{q})\}$$

$$Q(\mathbf{r}) = \rho(\mathbf{r}) * \rho(-\mathbf{r}) = \int \rho(\mathbf{u})\rho(\mathbf{r} + \mathbf{u}) d\mathbf{u}$$

$$Q(\mathbf{r}) = \int_{0}^{\infty} (\Delta \rho(\mathbf{u}) + \rho_{0}) (\Delta \rho(\mathbf{r} + \mathbf{u}) + \rho_{0}) d\mathbf{u}$$

$$= \int \Delta \rho(\mathbf{u}) \Delta \rho(\mathbf{r} + \mathbf{u}) d\mathbf{u} + C$$

$$I(\mathbf{q}) = \Im \{\Delta \rho(\mathbf{r}) * \Delta \rho(-\mathbf{r})\} + \Im \{C\}$$

$$I_{obs}(\mathbf{q}) = \Im \{\Delta \rho(\mathbf{r}) * \Delta \rho(-\mathbf{r})\}$$

$$I_{obs}(\mathbf{q}) = \Im \{\Delta \rho(\mathbf{r}) * \Delta \rho(-\mathbf{r})\}$$

 γ depending on particle shape and size, representing the probability of finding of a point u + r within the particle

Pair Distance Distribution Function (PDDF) and Correlation Function

 $p(\mathbf{r}) = r^2 \gamma(\mathbf{r})$

Probability finding scattering elements separated by r

Pair Distance Distribution Function $P(\mathbf{r})$

 $P(r) = r^2 \gamma(r) = r^2 \cdot \int \Delta \rho(u) \Delta \rho(r+u) du$

- ✓ Distribution of distances of atoms from centroid
- ✓ 1-D: Only distance, not direction
- ✓ 20:1 ratio $q_{min}(\pi/d_{max}):q_{max}$ usually ok
- ✓ p (r) gives an alternative measure of Rg and also "longest cord"

Particle Scattering Pattern and PDDF

S.-Y. Park et al., *Macromolecules*, 40, 3757-3764 (2007)

38

(2) Fine Structural Model Approach

Scattering amplitude (i.e., Scattering Function = Structure Function); Scattering intensity

- X-ray scattering from the electron density distribution in sample
- Small angle scattering for the large distance

$$F(\mathbf{q}) = \int_{V_r} \rho(\mathbf{q}) e^{i(\mathbf{q}\cdot\mathbf{r})} d\mathbf{r}$$

$$I(\mathbf{q}) = F(\mathbf{q}) \cdot F^*(\mathbf{q})$$

$$I(\mathbf{q}) = \left|\Im\left\{\rho(x)\right\}\right|^2$$

$$|\mathbf{s}| = \frac{2\sin\theta}{\lambda} = \frac{1}{d} \qquad |\mathbf{q}| = \frac{4\pi\sin\theta}{\lambda}$$

$$V(\mathbf{q}) = \Im\left\{Q(\mathbf{r})\right\}$$

$$Q(\mathbf{r}) = \Im^{-1}\left\{I(\mathbf{q})\right\}$$

F(r): Amplitude of scattered X - ray
I(q): Scattered Intensity
ρ(r): Electron density function
Q(r): Patterson function (ρ(r)*ρ(-r))
ℑ: Fourier transform

Example of FFT

- 1. FT of even functions are Fourier cosine transform.
- 2. FT of a cosine function is a delta function.
- 3. The amplitude of each function gives a spectrum.

Polymer Synthesis and Physics Laboratory

Scattering Angle Region versus Length Scale in Structural Information

1 limit q → 0 electron density contrast density fluctuations molecular weights

- <u>2</u> Guinier range particle size
- <u>3</u> particle shape large scale structures
- 4 Porod range particle surface Surface/volume
- 5 Intermolecular ordering

Scattering at Low Angles

Inhomogeneous Density Distribution over Large Distance (nm scale)

s = 1/d (or
$$q = 2\pi/d$$
) (Å⁻¹)
s = 0.001 - 0.1 Å⁻¹ d (10~ 1000 Å)
 $2\theta = 0.008$ -8, $\lambda = 1.542$ Å

$$s = |s| = \frac{2\sin\theta}{\lambda}$$
 $q = |\mathbf{q}| = 2\pi s$

- Morphological information of multiphase system: Domain (Particle) Size, Distribution, Surface Area, Interface Thickness

- Density Fluctuation
- Supramolecular Ordered Structure

Various types of plots

Methods to analyze I(q)

Invariant

Integration of Intensity

$$\int_0^\infty I_{obs}(s)ds = \int_0^\infty I_{obs}(s)e^{2\pi i s \cdot r}ds$$

 $\mathfrak{I}^{-l}[I_{obs}(s)]$

$$\left\langle \left(\Delta\rho\right)^{2}\right\rangle V\cdot\gamma(0) = \left\langle \left(\Delta\rho\right)^{2}\right\rangle V, \quad r=0$$

Integration of intensity = average density difference * scattering volume

Outline

- **1. Introduction POSTECH & Pohang Light Source**
- 2. Optics, Beamlines and Equipments of SAXS
- **3. Data Collection and Samples**
- 4. Fundamentals of SAXS
- 5. Fundamentals of Conventional, Transmission SAXS (TSAXS)
 - (1) Single Molecule (or Particle)

(2) Multiple Molecules (or Particles) and Their Assemblies

- 6. Fundamentals of Grazing Incidence SAXS (GISAXS)
 - (1) Static GISAXS
 - (2) In-Situ GISAXS
- 1. Conclusions I, II
- 2. References
- 3. Introduction M. Ree's Group at Postech
- 4. Acknowledgments

X-Ray Scattering from Multiple Molecules (or Particles)

Molecules (or Particles) and Their Assemblies

X-Ray Scattering from Multiple Molecules (Particles)

Convolution

$$\{F * S\}(\mathbf{r}) \equiv \int_{-\infty}^{\infty} F(\mathbf{u})S(\mathbf{r} - \mathbf{u})d\mathbf{u}$$
$$\{F * S\}(-\mathbf{r}) \equiv \int_{-\infty}^{\infty} F(\mathbf{u})S(\mathbf{r} + \mathbf{u})d\mathbf{u}$$

$$\mathfrak{I}{F*S} = \mathfrak{I}{F} \cdot \mathfrak{I}{S}$$

F

Single molecule (particle) Packing order ? (Positional order?)

S

 $S(q) \approx 1$ for dilute solution

$$I = N_p \left(\Delta \rho_p\right)^2 \mathbf{F}_{\underline{\mathcal{F}}_{2}(q)} \underbrace{S^{2}(q)}_{\text{Form}} \underbrace{S^{2}(q)}_{\text{Structure}}$$

Form Structure Factor Factor

Polymer Synthesis and Physics Laboratory

Various Shapes of Molecules (Particles) and Their Packing

$$\begin{split} I(s) &= \left| \Im\{\rho(x)\} \right|^2 & \rho(x) = \rho_A(x) * S(x) \\ \Im\{\rho(x)\} = \Im\{\rho_A(x)\} = \Im\{\rho_A(x) * S(x)\} \\ &= \Im\{\rho_A(x)\} \Im\{S(x)\} \\ &= \Im\{P_A(x)\} \Im\{S(x)\} \\ &= F(s) S(s) \end{split}$$

Polymer Synthesis and Physics Laboratory

H.H. Song et al., Macromolecules, 36, 9873 (2003)

Oriented Lamellar Patterns (WAXS)

H.H. Song et al., Macromolecules, 36, 9873 (2003)

Nanostructures

Sphere cubic packing

h	k	I	s ²	S	order	d
1	0	0	2.78E-04	0.016667	1	60.00
1	1	0	5.56E-04	0.02357	√2	42.43
1	1	1	8.33E-04	0.028868	√3	34.64
2	0	0	0.00111	0.033333	√4	30.00
2	1	0	0.00139	0.037268	√5	26.83
2	1	1	0.00167	0.040825	√6	24.49
2	2	0	0.00222	0.04714	√8	21.21
2	2	1	0.0025	0.05	√9	20.00
2	2	2	0.00333	0.057735	√12	17.32
3	0	0	0.0025	0.05	√9	20.00
3	1	0	0.00278	0.052705	√10	18.97
3	1	1	0.00306	0.055277	√11	18.09
3	2	0	0.00361	0.060093	√13	16.64
3	2	1	0.00389	0.062361	√14	16.04

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

Hexagonal cylinder

Columnar hexagonal packing

h	k	1	s ²	S	order	d
1	0	0	0.00037	0.019245	1	51.96
1	1	0	0.001111	0.033333	√3	30.00
2	0	0	0.001481	0.03849	√4	25.98
2	1	0	0.002593	0.050918	√7	19.64
2	2	0	0.004444	0.066667	√12	15.00
3	0	0	0.003333	0.057735	√9	17.32
3	1	0	0.004815	0.069389	√13	14.41
3	2	0	0.007037	0.083887	√19	11.92
3	3	0	0.01	0.1	√27	10.00
4	0	0	0.005926	0.07698	√16	12.99
4	1	0	0.007778	0.088192	√21	11.34
4	2	0	0.01037	0.101835	√28	9.82
4	3	0	0.013704	0.117063	√37	8.54
4	4	0	0.017778	0.133333	√48	7.50

$$\frac{1}{d^2} = \frac{4}{3} \left(\frac{h^2 + hk + k^2}{a^2} \right) + \frac{l^2}{c^2}$$

Columnar quadratic packing

h	k	I	s ²	S	order	d
1	0	0	0.000278	0.016667	1	60.00
1	1	0	0.000556	0.02357	√2	42.43
2	0	0	0.001111	0.033333	√4	30.00
2	1	0	0.001389	0.037268	√5	26.83
2	2	0	0.002222	0.04714	√8	21.21
3	0	0	0.0025	0.05	√9	20.00
3	1	0	0.002778	0.052705	√10	18.97
3	2	0	0.003611	0.060093	√13	16.64
3	3	0	0.005	0.070711	√18	14.14
4	0	0	0.004444	0.066667	√16	15.00
4	1	0	0.004722	0.068718	√17	14.55
4	2	0	0.005556	0.074536	√20	13.42
4	3	0	0.006944	0.083333	√25	12.00
4	4	0	0.008889	0.094281	√32	10.61

$$\frac{1}{d^2} = \frac{h^2 + k^2 + l^2}{a^2}$$

Two Phase System

Model of two phase system (A) and electron density distribution follow up line a-b (B).

Condensed Multi-phase

$$\rho_{1}, \rho_{2} : densities of particle and matrix
\phi_{1}, \phi_{2} : volume fractions $\rho_{0} = \rho_{1}\phi_{1} + \rho_{2}\phi_{2}$ average density
 $\eta(r) = \rho(r) - \rho_{o}$
 $\langle \eta^{2} \rangle = \Delta \rho^{2}\phi_{1}\phi_{2} \qquad \Delta \rho = \rho_{1} - \rho_{2}$
 $I_{obs}(\mathbf{s}) = \langle \eta^{2} \rangle V \Im \{\gamma(\mathbf{r})\} = \Delta \rho^{2}\phi_{2}\phi_{1}V \cdot \Im \{\gamma(\mathbf{r})\}$
 $I_{obs}(\mathbf{s}) = 2\pi (\Delta \rho)^{2}\phi_{1}\phi_{2}V \cdot \Im \{\gamma(\mathbf{r})\}$$$

PALP

 $p_2 = 0$

А

Surface Area

$$\int I_{obs}(s)ds = \int I_{obs}(s)e^{i2\pi(s\cdot\mathbf{r})}ds \quad (\mathbf{r}=0) \qquad \gamma'(0) = -\frac{1}{4\phi_1\phi_2}\frac{A}{V}$$

$$(\Delta \rho)^2 \phi_1 \phi_2 V \gamma(\mathbf{r}), \mathbf{r} = 0$$

Invariant

66

All produces identical I_{obs}

Lamella

Polymer Crystals (Lamellae)

$$I_{1obs}(s) = 4\pi s^2 I_{obs}(s)$$

Correlation Function

Polymer Synthesis and Physics Laboratory

70

Porod Law (for high scattering angle, Porod region)

For spherical particle

$$I_{obs}(s) = \frac{\rho - \rho_0}{8\pi^3} \left[\frac{4\pi R^2}{s^4} + \frac{1}{\pi s^6} + \frac{4R}{s^5} \sin 4\pi Rs + \left(\frac{4\pi a^2}{s^4} - \frac{1}{\pi s^6} \right) \cos 4\pi Rs \right]$$

when s is large

$$I_{obs}(s) = \frac{\rho - \rho_0}{8\pi^3} \frac{A}{s^4}$$
 A is surface area of the particle

Satisfies regardless of particle shape, size and concentration Surface area A can be obtained from the plot of $s^4 I_{obs}(s) vs. s$

This is also used for intensity fit at high angles

Polymer Synthesis and Physics Laboratory

Guinier Approximation

$$I_{obs}(s) = N \langle \eta^2 \rangle V^2 e^{-\frac{4}{3}\pi^2 R_g^2 s^2}$$

$$lnI_{obs}(s) = lnNV^{2} \langle \eta^{2} \rangle - \frac{4}{3} \pi^{2} R_{g}^{2} s^{2}$$

R_g : radius of gyration *V* : scattering volume

 R_g from the slope $I(0) = NV^2 \langle \eta \rangle^2$

Applicable only at very small angles Must be sufficiently dilute

POSTECH Polymer Synthesis and Physics Laboratory

Density Fluctuation

$$Fl(V) = \frac{\left\langle (N - \langle N \rangle)^2 \right\rangle}{\langle N \rangle}$$

$$Fl(V) = \int_{V_r} \frac{1}{\rho_0} I(s) \frac{1}{V} (\Sigma^2(s)) ds$$

$$Ruland (1975)$$

$$Fl(\infty) = \frac{1}{\rho_0} I(0)$$

$$Fl(\infty) = \rho \kappa T \beta_T$$

Correlation and Interface Distribution Functions Analysis on Lamellar Structure

Examples of various arbitrary models

$$Z''(r) = \frac{2}{r_e^2 (2\pi)^2} \int_0^\infty \left[\lim_{q \to \infty} q^4 I(q) - q^4 I(q) \right] \cos qr dq$$

Ideal Two Phase Model

$$I_{ideal} = \Im(\rho_{ideal} * \rho_{ideal})$$

 I_c =100Å, I_a =30Å, finite no. of lamellae in the stack is 20

Model With Interface (I)

The ideal two phase model with a finite crystal amorphous transition zone

*I*_c=100Å, *I*_a=30Å, *I_i*=12Å

Model With Interface (II)

Distribution of lamellar and amorphous layer sizes

$$L_{model} = L_c^M \ge L_c^m \quad for \ w_2 \le w_1$$

$$L_{model} = L_c^M \le L_c^m \quad for \, w_2 \ge w_1$$

2 ; thicker phase w; width of the thickness distribution L_{model}; average long spacing in the model

Dual Lamellar Stack Model

Stack 1 $I_c=90\text{\AA}, w_c=10\text{\AA}, I_a=25\text{\AA}, w_a=10\text{\AA}, I_i=15\text{\AA}, w_i=1\text{\AA}$ Stack 2 $I_c=60\text{\AA}, w_c=10\text{\AA}, I_a=25\text{\AA}, w_a=10\text{\AA}, I_i=15\text{\AA}, w_i=1\text{\AA}$

$$L_{c}^{M} \ge L_{I}, \quad L_{c}^{m} \ge L_{I}$$
$$L_{c}^{M} \ge L_{c}^{m} \ge L_{I} \quad for \ w_{2} \le w_{1}$$
$$L_{c}^{m} \ge L_{c}^{M} \ge L_{I} \quad for \ w_{2} \ge w_{1}$$

Examples

Correlation function

Interface distribution function

Solution SAXS versus Single Crystallography

(a) Crystal structure of *Escherichia coli* RseB at a resolution of 0.24 nm The solution models of RseB (b) and RseA₁₂₁₋₂₁₆/RseB complex (c) restored from the SAXS data at a resolution of 1.25 nm. The ribbon diagram of the RseB is overlapped onto the solution model of RseB for the comparison of overall shape and dimension.

D.Y. Kim, K.S. Jin, E. Kwon, M. Ree, K. K. Kim, Proc. Natl. Acad. Sci. U.S.A. 2007, 104, 8779-8784.

3 nm resolution model of the 30S subuinit in the 70S ribosome *E.coli* (Svergun & Nierhaus, May 2000)

0.33 nm resolution model of the 30S subunit *Th. Thermophilus* (Yonath group, September 2000)

3 nm resolution neutron scattering model of the 50S subunit in the 70S ribosome *E.coli* (Svergun & Nierhaus, May 2000)

0.24 nm resolution crystallographic model of the 50S subunit *H.marismortui* (Steitz group, August 2000)

Outline

- **1. Introduction POSTECH & Pohang Light Source**
- 2. Optics, Beamlines and Equipments of SAXS
- **3. Data Collection and Samples**
- 4. Fundamentals of SAXS
- 5. Fundamentals of Conventional, Transmission SAXS (TSAXS)
 - (1) Single Molecule (or Particle)
 - (2) Multiple Molecules (or Particles) and Their Assemblies
- 6. Fundamentals of Grazing Incidence SAXS (GISAXS)
 - (1) Static GISAXS
 - (2) In-Situ GISAXS
- 1. Conclusions I, II
- 2. References
- 3. Introduction M. Ree's Group at Postech
- 4. Acknowledgments

Grazing Incidence Small Angle X-ray Scattering (GISAXS)

PAL

Grazing Incidence X-ray Scattering (GIXS)

PENETRATION DEPTH

$$\zeta = \frac{\lambda}{\sqrt{2\pi}} \times \frac{1}{\sqrt{\sqrt{(\alpha_i^2 - \alpha_c^2)^2 + 4\beta^2} - (\alpha_i^2 - \alpha_c^2)}}$$

$$\alpha_i: \text{ incidence angle}$$

$$\alpha_c: \text{ critical angle of the sample}$$

$$\delta = \frac{\alpha_c^2}{2}, \delta = \frac{1}{2\pi} \gamma_e \lambda^2 \rho_e$$

$$\beta = \frac{\lambda\mu}{4\pi} = \frac{\lambda}{4\pi} \times \overline{\rho} \sum_j \left(\frac{\mu}{\overline{\rho}}\right)_j \omega_j$$

$$\underset{\rho: \text{ mass density of the sample}}{\overset{\text{ weight fraction}}{\overset{\text{ weight fraction}}{\overset{weight fraction}}{\overset{weight fraction}}{\overset{weight fraction}}{\overset{weight fraction}}{\overset{weight fraction}}{\overset{weig$$

 γ_{e} : classical radius of electron

M. Tolan, X-ray Scattering from Soft-Matter Thin films. (1999) Springer, NY.

Challenges in Characterization of Nano-Products

Concerns and Complexity in GIXS and GIXS Theory Development for characterizing Nanostructures in nanoscale specimens supported with substrates

TSAXS vs GISAXS for Characterizing Nanotructure on Substrate

Polymer Synthesis and Physics Laboratory

GIXS Analysis of Nanotructure in supported with Substrate

POSTECH Polymer Synthesis and Physics Laboratory

Concerns

- Scattering from surface roughness : diffuse scattering

* usually very weak,

but depending on the degree of roughness or surface structure.

(This is not discussed in this presentation. Further information available: Sinha, et al., *Phys. Rev. B.* (1988) 38, 2297, etc.)

POSTECH Polymer Synthesis and Physics Laboratory

POSTECH Polymer Synthesis and Physics Laboratory

POSTECH Polymer Synthesis and Physics Laboratory

$$I_{GIXS}(\alpha_{f}, 2\theta_{f}) \cong \frac{1}{16\pi^{2}} \cdot \frac{1 - e^{-2\operatorname{Im}(q_{z})\cdot \mathbf{d}}}{2\operatorname{Im}(q_{z})} \cdot \frac{\left|T_{i}T_{f}\right|^{2} I_{1}(q_{\parallel}, \operatorname{Re}(q_{1,z})) + |T_{i}R_{f}|^{2} I_{1}(q_{\parallel}, \operatorname{Re}(q_{2,z})) + |T_{f}R_{i}|^{2} I_{1}(q_{\parallel}, \operatorname{Re}(q_{3,z})) + |R_{i}R_{f}|^{2} I_{1}(q_{\parallel}, \operatorname{Re}(q_{4,z}))|$$

 I_1 , scattered intensity from scatters in nanoscales

(1) Spherical structures:

$$I_{1} = c \int_{0}^{\infty} n(r) \upsilon^{2}(r) |F(qr)|^{2} S(qr) dr$$
$$n(r) = \frac{1}{\sqrt{2\pi}r_{o}\sigma e^{\sigma^{2}/2}} e^{\frac{-\ln(r/r_{o})^{2}}{2\sigma^{2}}}$$

(2) Random two-phase structures:

$$I_{1} = \frac{8\pi\phi(1-\phi)(\rho_{e(film\ medium)} - \rho_{e(scatter)})^{2}\xi^{3}}{(1+q^{2}\xi^{2})^{2}}$$

(3) Structures in Crystal lattices:

$$I_1(\mathbf{q}) = S(\mathbf{q}) \cdot P(\mathbf{q})$$

Ree, et al., Macomolecules (2005) 38, 3395 Macromolecules (2005) 38, 4311. Nature Materials (2005) 4, 147 Adv. Mater. (2005) 17, 696

2D GIXS Pattern measured for a nanopous dielectric thin film

Polymer Synthesis and Physics Laboratory

(1) Data Analysis with GIXS of Spherical Structures (Pores)

POSTECH Polymer Synthesis and Physics Laboratory

(2) Data Analysis with GIXS of Ellipsoidal Structures (Pores)

POSTECH Polymer Synthesis and Physics Laboratory

(3) Data Analysis with GIXS of Cylindrical Structures (Pores)

POSTECH Polymer Synthesis and Physics Laboratory

This Series of GIXS Analyses gives Conclusions:

2⊖(In-plane)

- Nanopore shape: "Sphere (hard sphere)"
- Packing order: "None" (randomly disparsed in the film)

(randomly dispersed in the film plane)

(4) Structural Information in the Out-of-Plane

In- and Out-of-Plane GIXS Profiles Analysis gives Conclusions:

- Nanopore shape: "Sphere (hard sphere)"
- Packing order: "None"
 - (randomly dispersed within the thin film)

* Further, We have verified these GIXS Analysis Results by the TXS Measurement and Data Analysis!

M. Ree et al., *Macromolecules* **39, 8991 (2005)** 107

Pore structures and properties of nanoporous PMSSQ films imprinted with PCL4 porogen

Porogen loading (wt%)	Cure temp (°C)	$\overline{R_g}^{a}$ (nm)		$ ho_e{}^b$	P^{c}	d	1_6
		GIXS	TXS	(nm^{-3})	(%)	n	K
0	400	-	-	399	-	1.3960	2.70
PCL4							
10	400	5.3(0.01)	4.4 (0.06)	373	6.5	1.3587	2.44
20	400	10.0(0.02)	11.3 (0.10)	338	15.3	1.3207	2.16
30	400	>40 ^g	>40 ^g	302	24.3	1.2795	1.85
30	200	-	>40 ^g	398	-	-	-

^{*a*}Average radius of gyration estimated from the radius *r* and number distribution of pores obtained by the analysis of SAXS profile.

^b Electron density determined from the out-of-plane GISAXS profile.

^c Porosity estimated from the electron density of the film.

^{*d*} Refractive index measured at 633 nm using spectroscopic ellipsometry.

^e Dielectric constant measured at 1 MHz using an impedance analyzer.

^{*f*}Standard deviation in the determined $\overline{R_g}$ value.

^{*g*} Not detected due to the out of the detection limit (ca. 40 nm).

M. Ree et al., Macromolecules 39, 8991 (2005)

(5) 2D GIXS Simulation

POSTECH Polymer Synthesis and Physics Laboratory Adv. Mater. (2005) 17, 696 109 **Patents filed**

Internal Structure of a Nano-Template on Si Substrate

PS-b-PMMA Film (25-90 nm thick)

$$\begin{aligned} & I_{GIX}(\alpha_{f}, 2\theta_{f}) \cong \frac{1}{16\pi^{2}} \cdot \frac{1 - e^{-2\mathrm{Im}(q_{z})\cdot d}}{2\mathrm{Im}(q_{z})} \cdot \begin{bmatrix} |T_{i}T_{f}|^{2}I_{1}(q_{\parallel}, \mathrm{Re}(q_{1,z})) + \\ |T_{i}R_{f}|^{2}I_{1}(q_{\parallel}, \mathrm{Re}(q_{2,z})) + \\ |T_{i}R_{f}|^{2}I_{1}(q_{\parallel}, \mathrm{Re}(q_{2,z})) + \\ |T_{i}R_{f}|^{2}I_{1}(q_{\parallel}, \mathrm{Re}(q_{2,z})) + \\ |T_{i}R_{f}|^{2}I_{1}(q_{\parallel}, \mathrm{Re}(q_{2,z})) + \\ |R_{f}R_{f}|^{2}I_{1}(q_{\parallel}, \mathrm{Re}(q_{2,$$

g: paracrystal distortion factor

-500

Structural and property characteristics of thin films of the PS-*b*-PMMA/PMMA mixtures before and after UV-etching

Sample	t ^a (nm)	Structural parameters					Properties		
		<i>L^b</i> (nm)	\overline{R}^{c} (nm)	σ_R^d (nm)	d _{sp} ^e (nm)	g^f	$a_c{}^g$ (deg.)	$\rho_e^{\ h}$ (nm ⁻³)	P _e ⁱ (%)
Before etching									
Film-1	28.5	28.5	11.0	3.01	34.0	0.053	0.156	348	_
Film-2	78.8	78.8	11.4	3.00	34.0	0.048	0.156	348	-
After UV-etching									
Film-3	25.0	25.0	11.8	2.95	34.0	0.040	0.136	265	25.3
Film-4	86.1	86.1	11.7	2.90	34.0	0.036	0.135	261	26.6

^{*a*} Film thickness.

^b Length of the cylindrical pores.

^c Pore radius determined from the peak maximum of the radius r and the number distribution of pores.

^{*d*} Standard deviation of the pore radius.

^{*e*} Center-to-center distance of the cylindrical pores (*d*-spacing of the hexagon).

^fParacrystal distortion factor

^{*g*} Critical angle of the film determined from the out-of-plane GIXS profile.

^{*h*} Electron density determined from the critical angle of the film.

^{*i*} Porosity estimated from the electron density of the film with respect to the electron density of PS.

Self-Assembled PS-b-PMMA Diblock Copolymer on Substrate

PS-b-PMMA Film (200 nm thick)

POSTECH Polymer Synthesis and Physics Laboratory

114

PAL

Self-Assembled PS-b-PI Diblock Copolymer on Substrate

PS-*b*-PI (wt_{PI}=0.634) film (1254 nm thick) rms roughness: 0.1-0.3 nm

Ree et al., Macromolecules, 38, 4311 (2005); Macromolecules, 38, 10532 (2005) Macromolecules, 40 (2007), ASAP; J. Appl. Crystal. (in press)

Phase Transition of HPL phase to Gyroid

PS-*b*-PI (wt_{PI}=0.634) film (1254 nm thick) rms roughness: 0.1-0.3 nm

•Gyroid-structured microdomains perfectly oriented along the {121} plane parallel to the in-plane of a film.

Ree, Chang, et al., *Macromolecules*, 38, 10532 (2005) *Macromolecules*, 40 (2007), ASAP

*Co-worked with Prof. Taihyun Chang (Postech)

Solar Cell: Nanofilms of Poly(3-hexylthiophene)(P3HT)/Fullerene

Outline

- **1. Introduction POSTECH & Pohang Light Source**
- 2. Optics, Beamlines and Equipments of SAXS
- **3. Data Collection and Samples**
- 4. Fundamentals of SAXS
- 5. Fundamentals of Conventional, Transmission SAXS (TSAXS)
 - (1) Single Molecule (or Particle)
 - (2) Multiple Molecules (or Particles) and Their Assemblies
- 6. Fundamentals of Grazing Incidence SAXS (GISAXS)
 - (1) Static GISAXS
 - (2) In-Situ GISAXS
- 1. Conclusions I, II
- 2. References
- 3. Introduction M. Ree's Group at Postech
- 4. Acknowledgments

In-Situ GIXS Measurements

In-situ GIXS - Nanopous dielectric thin films: Low-k nanofilms

Polymer Synthesis and Physics Laboratory

Polymer Synthesis and Physics Laboratory

Outline

- **1. Introduction POSTECH & Pohang Light Source**
- 2. Optics, Beamlines and Equipments of SAXS
- **3. Data Collection and Samples**
- 4. Fundamentals of SAXS
- 5. Fundamentals of Conventional, Transmission SAXS (TSAXS)
 - (1) Single Molecule (or Particle)
 - (2) Multiple Molecules (or Particles) and Their Assemblies
- 6. Fundamentals of Grazing Incidence SAXS (GISAXS)
 - (1) Static GISAXS
 - (2) In-Situ GISAXS
- 1. Conclusions I, II
- 2. References TSAXS, GISAXS
- 3. Introduction M. Ree's Group at Postech
- 4. Acknowledgments

Conclusions – TSAXS

- SAXS Optics and Sample Stage Related Equipments Reviewed.
- Theoretical Fundamentals of TSAXS Reviewed.
- TSAXS is Very Powerful to Analyze Single Particles (Molecules) and Their Assemblies in Solutions and Solids.
- TSAXS is Very Powerful to Analyze Proteins and Other Biomacrmolecules in Nature.
- TSAXS is Very Powerful to Characterize Structural Changes in Time-Resolved Mode.
- GIXS is the Nondestructive analysis technique.

Conclusions – GISAXS

- GISAXS Optics, Theory and Data Analysis Methods Reviewed.
- GISAXS is Very Powerful to Analyze Structures in Nanoscaled Samples and Products.
- GISAXS is Very Powerful to Characterize Structural Changes in Time-Resolved Mode.
- GISAXS is the Nondestructive analysis technique.

References – TSAXS

- D. Y. Kim, K. S. Jin, E. Kwon, M. Ree, K. K. Kim, *Proc. Natl. Acad. Sci. USA*, 104, 8779-8784 (2007).
- J. M. Choi, S. Y. Kang, W. J. Bae, K. S. Jin, M. Ree, Y. Cho, J. Biol. Chem., 282, 9941-9951 (2007).
- D. S. Jang, H. J. Lee, B. Lee, B. H. Hong, H. J. Cha, J. Yoon, K. Lim, Y. J. Yoon,
 J. Kim, M. Ree, H. C. Lee, K. Y. Choi, *FEBS Letters*, 580, 4166-4171 (2006).
- 4) K. Heo, J. Yoon, K. S. Jin, S. Jin, G. Kim, H. Sato, Y. Ozaki, M. Satkowski, I. Noda, M. Ree, *J. Appl. Crystallography*, **40**, s594-s598 (2007).
- 5) B. Lee, T. J. Shin, S. W. Lee, J. Yoon, J. Kim, M. Ree, *Macromolecules*, **37**, 4174-4184 (2004).
- B. Lee, T. J. Shin, S. W. Lee, J. Yoon, J. Kim, H. S. Youn, K.-B. Lee, M. Ree, *Polymer*, 44, 2509-2518 (2003).
- 7) B. Lee, T.J. Shin, S.W. Lee, J.W. Lee, M. Ree, *Macromol. Symp.*, **190**, 173 (2002).
- 8) T.J. Shin, B. Lee, H.S. Youn, K.-B. Lee, M. Ree, *Langmuir*, **17**, 7842 (2001).
- 9) S. I. Kim, T.J. Shin, S.M. Pyo, J.M. Moon, M. Ree, *Polymer*, 40, 1603 (1999).
- 10) J. K. Kim, H. H. Lee, M. Ree, K.-B. Lee, J. Park, *Macromol. Chem. Phys.*, **199**, 641 (1998).
- 11) M. Ree, K. Kim, S. H. Woo, and H. Chang, J. Applied Physics, 81, 698-708 (1997).
- 12) M. Ree, T. L. Nunes, J. S. Lin, *Polymer*, **35**, 1148 (1994).
- 13) H. H. Song, M. Ree, D. Q. Wu, B. Chu, M. Satkowski, R. Stein, J. C. Phillips, *Macromolecules*, 23, 2380 (1990).
- 14) H. H. Song, D. Q. Wu, M. Ree, R. S. Stein, J. C. Phillips, A. LeGrand, B. Chu, *Macromolecules*, 21, 1180 (1988).
- 15) R.-J. Roe, *Methods of X-Ray and Neutron Scattering in Polymer Science*. Oxford Univ. Press, N. Y., 2000.
- 16) L. E. Alexander, X-Ray Diffraction Methods in Polymer Science. Wiley-Interscience, N. Y., 1969.

References – GISAXS (1)

- 1) K. Heo, J. Yoon, S. Jin, J. Kim, K.-W. Kim, T. J. Shin, B. Chung, T. Chang, M. Ree, *J. Appl. Cryst.* (in press, 2007).
- 2) G.-W. Lee, J. Kim, J. Yoon, J.-S. Bae, B. C. Shin, I. S. Kim, W. Oh, M. Ree, *Thin Solid Films* (in press, 2007).
- 3) S. Jin, J. Yoon, K. Heo, H.-W. Park, T. J. Shin, T. Chang, M. Ree, *J. Appl. Crystallography*, **40**, 950-958 (2007).
- K. Heo, S.-G. Park, J. Yoon, K. S. Jin, S. Jin, S.-W. Rhee, M. Ree, J. Phys. Chem. C. 111, 10848-10854 (2007).
- 5) J. Yoon, K. S. Jin, H. C. Kim, G. Kim, K. Heo, S. Jin, J. Kim, K.-W. Kim, M. Ree, *J. Appl. Crystallography*, **40**, 476-488 (2007).
- J. Yoon, S. C. Choi, S. Jin, K. S. Jin, K. Heo, M. Ree, J. Appl. Crystallography, 40, s669-s674 (2007).
- 7) K. S. Jin, K. Heo, W. Oh, J. Yoon, B. Lee, Y. Hwang, J.-S. Kim, Y.-H. Park, T. Chang, M. Ree, J. Appl. Crystallography, 40, s631-s636 (2007).
- 8) K. Heo, K. S. Oh, J. Yoon, K. S. Jin, S. Jin, C. K. Choi, M. Ree, *J. Appl. Crystallography*, **40**, s614-s619 (2007).
- 9) T. J. Lee, G.-s. Byun, K. S. Jin, K. Heo, G. Kim, S. Y. Kim, I. Cho, M. Ree, J. Appl. Crystallography, 40, s620-s625 (2007).
- W. Oh, Y. Hwang, T. J. Shin, B. Lee, J.-S. Kim, J. Yoon, S. Brennan, A. Mehta, M. Ree, J. Appl. Crystallography, 40, s626-s630 (2007).
- 11) J. Yoon, S. Y. Yang, K. Heo, B. Lee, W. Joo, J. K. Kim, M. Ree, J. Appl. Crystallography, 40, 305-312 (2007).
- 12) Y. Kim, J. Nelson, J. R. Durrant, D. D. C. Bradley, K. Heo, J. Park, H. Kim, I. McCulloch, M. Heeney, M. Ree, C.-S. Ha, *Soft Matter*, **3**, 117-121 (2007).
- 13) K. Heo, K. S. Jin, J. Yoon, S. Jin, W. Oh, M. Ree, J. Phys. Chem. B, 110, 15887-15895 (2006).
- 14) J. Yoon, K. Heo, W. Oh, K. S. Jin, S. Jin, J. Kim, K.-W. Kim, T. Chang, M. Ree, *Nanotechnology*, **17**, 3490-3498 (2006).
- 15) K. Heo, J. Yoon, M. Ree, *IEE Proc. Bionanotechnology*, **153**, 121-128 (2006).

References – GISAXS (2)

- 16) Y. Kim, S. Cook, S. M. Tuladhar, S. A. Choulis, J. Nelson, J. R. Durrant, D. D. C. Bradley, M. Giles, I. McCulloch, C.-S. Ha, M. Ree, *Nature Materials*, 5, 197-203 (2006).
- 17) Y. Hwang, K. Heo, C.H. Chang, M.K. Joo, M. Ree, *Thin Solid Films*, **510**, 159-163 (2006).
- 18) M. Ree, J. Yoon, K. Heo, J. Mater. Chem., 2006, 16, 685-697.
- 19) B. Chung, M. Choi, M. Ree, J. C. Jung, W. C. Zin, T. Chang, *Macromolecules*, **39**, 684-689 (2006).
- 20) I. Park, B. Lee, J. Ryu, K. Im, J. Yoon, M. Ree, T. Chang, *Macromolecules*, **38**, 10532-10536 (2005).
- B. Lee, W. Oh, J. Yoon, Y. Hwang, J. Kim, B. G. Landes, J. P. Quintana, and M. Ree, *Macromolecules*, 38, 8991-8995 (2005).
- 22) J.-S. Kim, H.-C. Kim, B. Lee, M. Ree, Polymer, 46, 7394-7402 (2005).
- 23) B. Lee, I. Park, J. Yoon, S. Park, J. Kim, K.-W. Kim, T. Chang, M. Ree, *Macromolecules*, **38**, 4311-4323 (2005).
- 24) B. Lee, J. Yoon, W. Oh, Y. Hwang, K. Heo, K. S. Jin, J. Kim, K.-W. Kim, M. Ree, *Macromolecules*, **38**, 3395-3405 (2005).
- 25) B. Lee, W. Oh, Y. Hwang, Y.-H. Park, J. Yoon, K. S. Jin, K. Heo, J. Kim, K.-W. Kim, M. Ree, *Adv. Mater.*, **17**, 696-701 (2005).
- 26) B. Lee, Y.-H. Park, Y.-T. Hwang, W. Oh, J. Yoon, M. Ree, *Nature Materials*, 4, 147-150 (2005).
- 27) K. Omote, Y. Ito, S. Kawamura, Appl. Phys. Lett., 82, 544-546 (2003).
- 28) R. Lazzari, J. Appl. Crystal., 35, 406 (2002).
- 29) M. Rauscher, T. Salditt, H. Spohn, Phys. Rev. B., 52, 16855 (1995).
- 30) S. K. Sinha, E. B. Sirota, S. Garoff, H. B. Stanley, *Phys. Rev. B.*, **38**, 2297-2311(1988).
- 31) M. Tolan, X-ray Scattering from Soft-Matter Thin films. Springer, NY, 1999.
- 32) V. Holy, U. Pietsch, T. Baumbach, *High-resolution X-ray scattering from thin films and multilayers*. Springer-Verlag, Berlin, 1999.

M. Ree's Group at Postech

- 1. Research Fields
- <Polymer Physics>
 - Polymer chain conformation
 - Structures and morphology
 - Nanostructuring
 - Electric, dielectric, optical, thermal, mechanical properties
 - Sensor properties
 - Surface, interfaces
- <Polymer Synthesis>
 - Functional polymers
 - Structural polymers
 - Polypeptides, DNA, RNA
- 2. Group Members (25) 2 Postdoctoral Fellows 14 Ph.D. candidates 5 Undergraduates 2 Technicians 2 Secretary

132 **3 Scientists (Ph.D., PLS: Coworkers)**

- Polymers for Microelectronics, Displays, & Sensors
- Polymers for Implants & Biological Systems
- Proteins & Polynucleic acids (DNA, RNA)

POSTECH Campus

Pohang City

Thank you very much for your attention !!!

