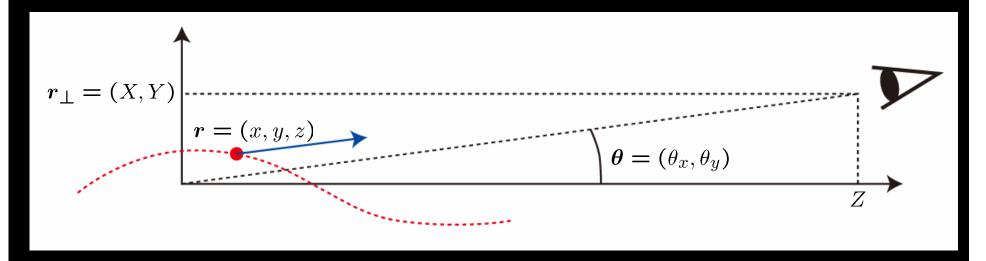
Light Source II

Takashi TANAKA (RIKEN SPring-8 Center)

Characteristics of SR (2) - Radiation from IDs

Electron Trajectory in ID Field

Coordinate Systems



SR emitted by an electron moving at $\mathbf{r} = (x,y,z)$ Observation of SR at $\mathbf{R} = (X,Y,Z)$

If the far-field approximation (|r| < Z) is applicable, the radiation pattern depends only on the observation angle $\theta = (\theta_x, \theta_y)$.

Field Integrals

$$\frac{d\mathbf{P}}{dt} = m\gamma \frac{d\mathbf{v}}{dt} = -e\mathbf{v} \times \mathbf{B} \longrightarrow \begin{cases} m\gamma \dot{v_x} = -e(v_y B_z - v_z B_y) \\ m\gamma \dot{v_y} = -e(v_z B_x + v_x B_z) \end{cases}$$

Equation of motion of an electron moving in a magnetic field **B**

$$B_z \equiv 0$$

$$m\gamma \frac{dv_{x,y}}{v_z dt} = m\gamma \frac{dv_{x,y}}{dz} = \pm eB_{y,x}$$

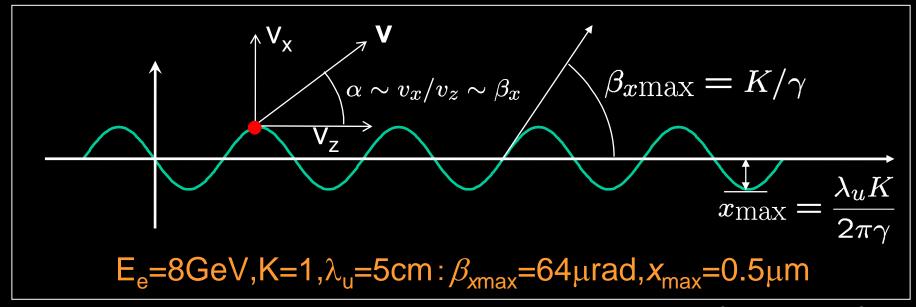
$$\beta_{x,y} = \pm \frac{e}{\gamma mc} \int^{z} B_{y,x}(z') dz' \equiv \pm \frac{e}{\gamma mc} I_{1y,1x}(z)$$
$$x, y = \pm \frac{e}{\gamma mc} \int^{z} \int^{z'} B_{y,x}(z'') dz'' \equiv \pm \frac{e}{\gamma mc} I_{2y,2x}(z)$$

 I_1, I_2 : 1st and 2nd field integrals of ID

Electron Trajectory in an Ideal ID

$$\begin{cases} B_x(z) = 0 \\ B_y(z) \sim B_0 \sin\left(\frac{2\pi z}{\lambda_u}\right) \end{cases} \begin{cases} \beta_y = 0 \\ \beta_x = \frac{K}{\gamma} \cos\left(\frac{2\pi z}{\lambda_u}\right) \end{cases} \begin{cases} y = 0 \\ x = \frac{\lambda_u K}{2\pi \gamma} \sin\left(\frac{2\pi z}{\lambda_u}\right) \end{cases}$$
 magnetic field velocity position

$$K=rac{eB_0\lambda_u}{2\pi mc}$$
 K value, Deflection parameter



Effects due to the ID Field

transverse velocity $\beta_x = \frac{K}{\gamma} \cos\left(\frac{2\pi z}{\lambda_u}\right)$ longitudinal velocity $\beta_z = \sqrt{\beta^2 - \beta_x^2} \quad \text{total velocity}$ $= 1 - \frac{1}{2\gamma^2} - \frac{K^2}{4\gamma^2} - \frac{K^2}{4\gamma^2} \cos\left(\frac{4\pi z}{\lambda_u}\right)$ $\bar{\beta}_z : \text{average velocity} \quad \text{oscillating component}$

ID field induces:

- transverse(x) oscillation
- longitudinal (z) oscillation
- effective deceleration($\Delta \beta_z = K^2/4\gamma^2$)

Electron Motion: Two Forms

$$\beta_x = \frac{K}{\gamma} \cos\left(\frac{2\pi z}{\lambda_u}\right)$$

- Horizontal oscillation with a period of λ_u
- Major contribution to radiation

$$\beta_z = \bar{\beta_z} - \frac{K^2}{4\gamma^2} \cos\left(\frac{4\pi z}{\lambda_u}\right)$$

- Longitudinal oscillation with a period of $\lambda_u/2$
- Amplitude $1/\gamma$ times lower than β_x .
- Minor contribution, but source of vertical polarization observed vertically off-axis.

General Form of Time Squeezing

$$\frac{d\tau}{dt} = 1 - \beta \cdot \mathbf{n}$$

$$\beta_z = \sqrt{\beta^2 - \beta_x^2 - \beta_y^2}$$

$$\sim 1 - (\gamma^{-2} + \beta_x^2 + \beta_y^2)/2$$

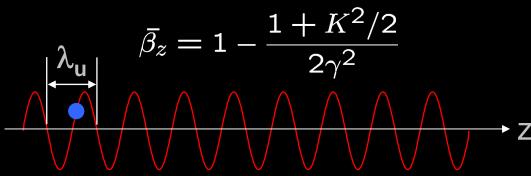
$$n_z \sim 1 - (\theta_x^2 + \theta_y^2)/2$$

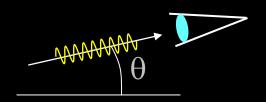
$$= \frac{1}{2\gamma^2} + (\theta_x - \beta_x)^2 + (\theta_y - \beta_y)^2$$

Time squeezing takes place most significantly when the direction of the electron motion coincides with that of observation ($\beta = \theta$).

Qualitative Descriptions of Undulator Radiation

Fundamental Wavelength

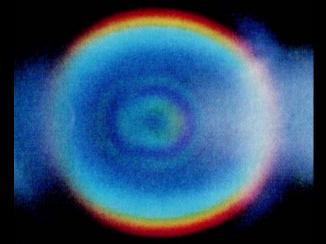




$$T = \lambda_u/v_z = \lambda_u/c$$

period of electron motion time squeezing
= period of emitted light

$$T' = T(1 - \bar{\beta}_z \cos \theta)$$
 period of observed light

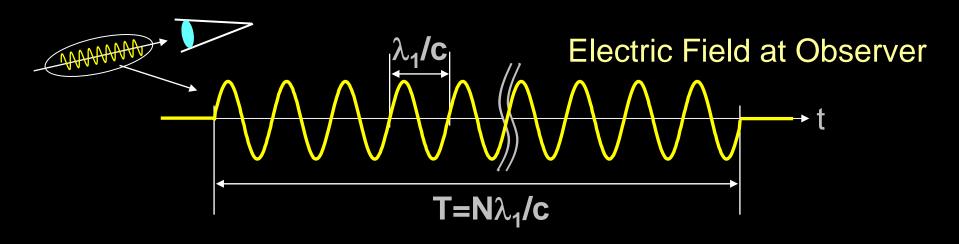


Fundamental Wavelength λ_1

$$\lambda_1 = \lambda_u (1 - \bar{\beta}_z \cos \theta)$$
$$= \frac{\lambda_u}{2\gamma^2} (1 + \gamma^2 \theta^2 + K^2/2)$$

H. Kitamura et al.,J. Appl. Phys. 21 (1982) 1728

Effects due to Finite Periods



$$E(t) = \begin{cases} E_0 \sin \omega_1 t & ; -T/2 \le t \le T/2 \\ 0 & ; t < -T/2, T/2 < t \end{cases}, \ \omega_1 = 2\pi c/\lambda_1$$

Fourier Transform

$$\frac{d^2 F(\omega, \theta)}{d\Omega d\omega/\omega} \propto |\tilde{E}(\theta, \omega)|^2 \propto \text{sinc}^2 \left[\pi N \frac{\omega - \omega_1(\theta)}{\omega_1(\theta)} \right]$$

Square of "sinc" function dominates the UR

Brief Note on UR Formulae

- In the previous derivations of UR spectral function, no knowledge on electrodynamics is required.
- In practice, E_0 is a complicated function of θ and K, and needs to be calculated by Fourier transforming the electric field derived from the Lienard-Wiecherd potential.
- However, the simple derivation gives us a clear understanding on UR properties.

Energy and Angular Profile of UR

$$\frac{d^2 F(\omega, \theta)}{d\Omega d\omega/\omega} = F_0 \text{sinc}^2 \left[\pi N \frac{\omega - \omega_1(\theta)}{\omega_1(\theta)} \right]$$

Energy Profile at $\theta = 0$

$$F_0 \mathrm{sinc}^2(N\pi\varepsilon)$$

; $\varepsilon = [\omega - \omega_1(0)]/\omega_1(0)$

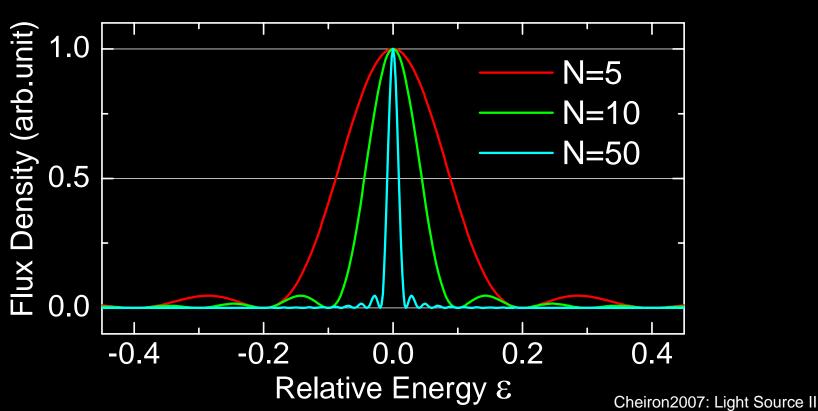
Angular Profile at $\omega = \alpha \omega_1(0)$

$$F_0 \operatorname{sinc}^2[N\pi(\alpha\Theta^2 + \alpha - 1)]$$

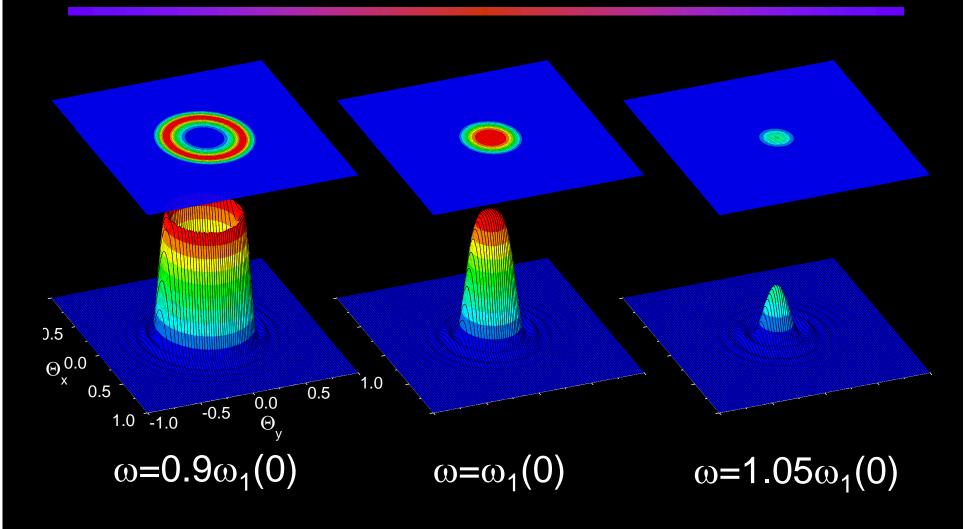
; $\Theta = \gamma\theta/\sqrt{1 + K^2/2}$

Energy Profile: Example

$$\frac{d^2 F(\omega, \theta)}{d\Omega d\omega/\omega} = F_0 \text{sinc}^2(N\pi\varepsilon); \quad \text{sinc}^2(2.783) \sim 1/2$$



Angular Profile: Example



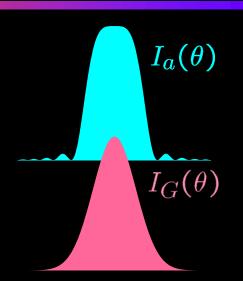
Angular Divergence and Beam Size

Angular Profile at $\omega = \omega_1(0)$

$$I_a(\theta) = F_0 \operatorname{sinc}^2 \left[\frac{\pi N(\gamma \theta)^2}{1 + K^2/2} \right]$$

approximation

Gaussian Profile with $\sigma_{r'}$ $I_G(\theta) = F_0 \exp(-\theta^2/2\sigma_{r'}^2)$



$$\sigma_{r'} = \sqrt{rac{1+K^2/2}{4N\gamma^2}} = \sqrt{rac{\lambda_1}{2L}}$$
 Angular Divergence of UR

Diffraction Limit

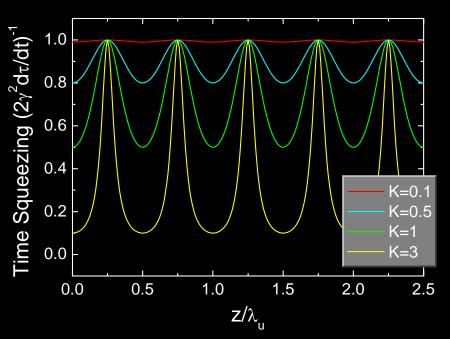
$$\sigma_r = rac{\lambda_1}{4\pi\sigma_{rl}} = rac{\sqrt{\lambda_1 L}}{4\pi}$$
 Beam Size of UR

Higher Harmonics

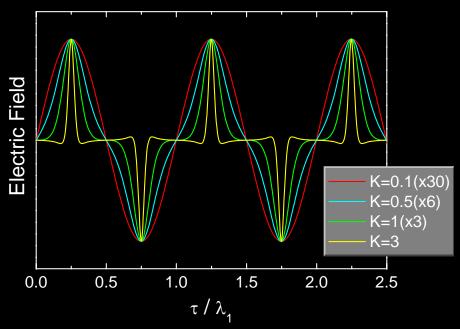
- In addition to the fundamental radiation at ω_1 , higher-energy radiation at $n\omega_1$, called higher harmonics, is observed. The integer n is referred to as a harmonic number.
- This is a consequence of the fact that the time-squeezing factor depends on the longitudinal electron position and thus the electric field in the time domain is distorted.

Interpretation of Higher Harmonics

$$\frac{d\tau}{dt} = 1 - \beta \cdot n = \frac{1}{2\gamma^2} \left[1 + K^2 \cos^2(2\pi z/\lambda_u) \right]$$
 on-axis observation:n=(0,0,1)



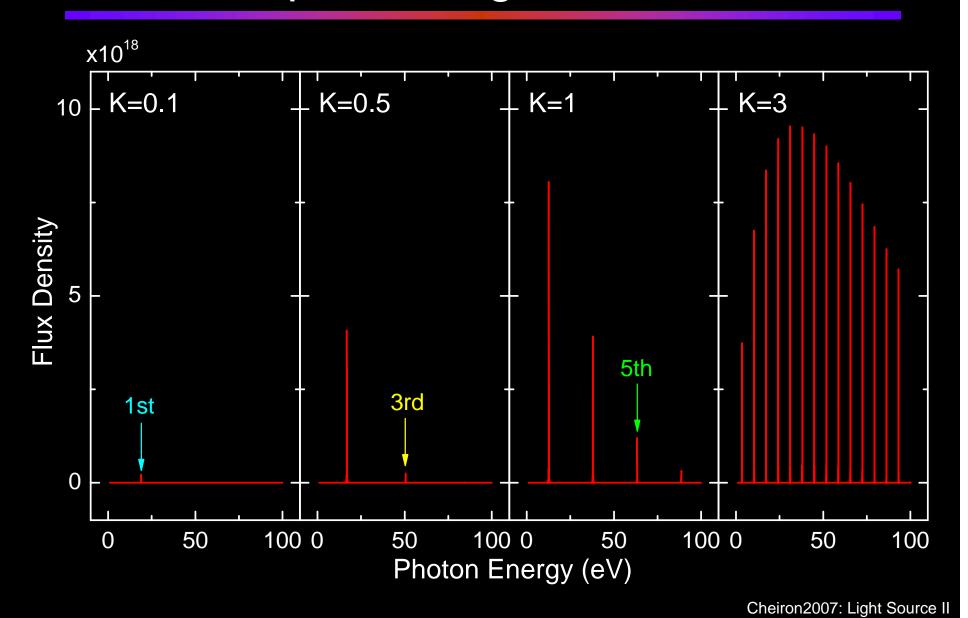




Distortions of the electric field takes place due to the nonuniform time squeezing. Due to symmetry, even harmonics do not appear.

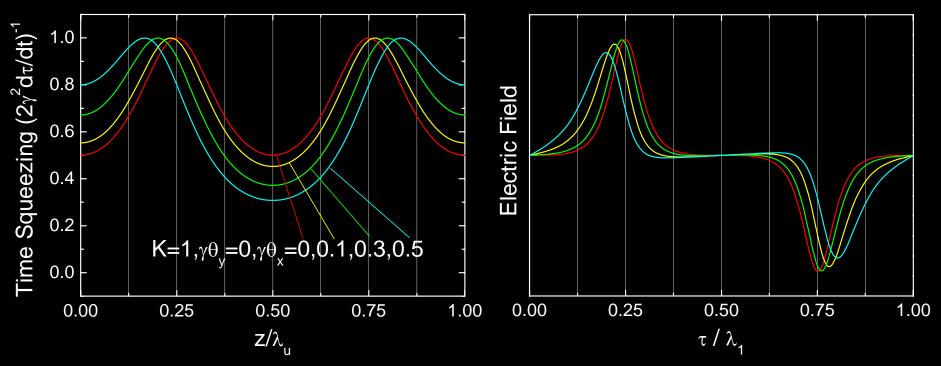
Cheiron2007: Light Source II

Examples of Higher Harmonics



Even Harmonics Horizontally Off Axis

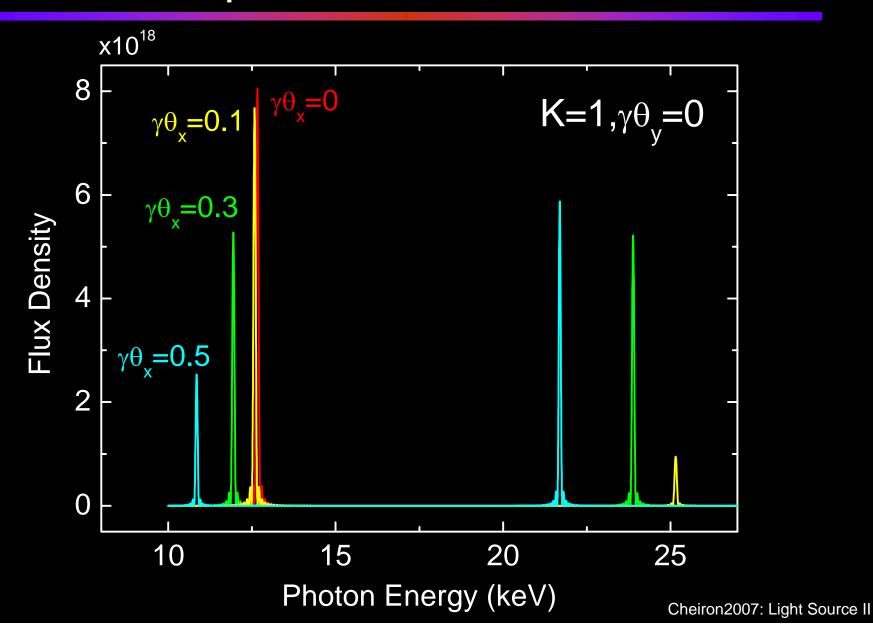
$$\frac{d\tau}{dt} = \frac{1}{2\gamma^2} \left[1 + \left(\gamma \theta_x - K \cos \frac{2\pi z}{\lambda_u} \right)^2 \right]$$



The position for the maximum time squeezing is shifted due to finite θ_x .

The symmetry of the electric field is broken, resulting in appearance of even harmonics.

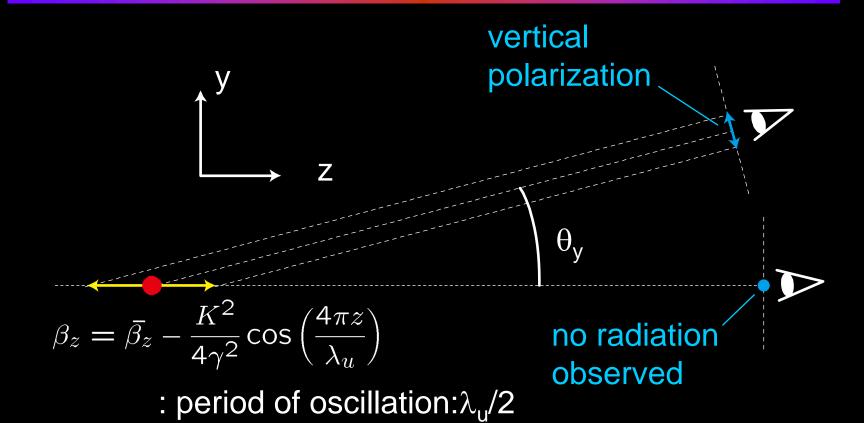
Examples of Even Harmonics



Even Harmonics Vertically Off Axis

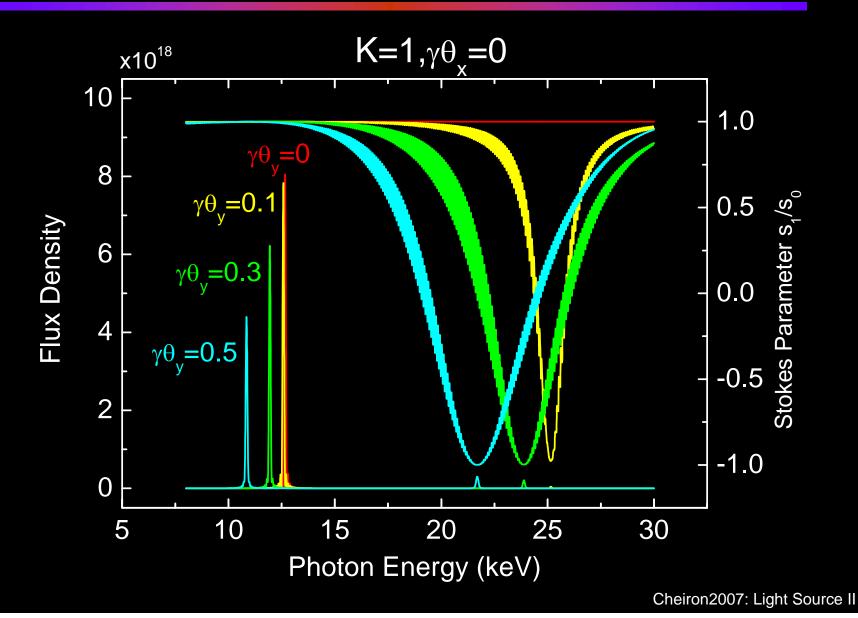
- Vertically off-axis observation does not break the symmetry of the E-field.
- Nevertheless, even harmonics are observed due to the longitudinal oscillation in electron motion with a period of $\lambda_u/2$.
- Such even harmonics are vertically polarized, reflecting the electron motion projected onto the plane of observation.

Mechanism of Vertical Polarization



Note: amplitude of oscillation is $\sim \gamma^{-1}$ smaller than that of β_x

Example of Vertical Polarization



Optical Properties of Higher Harmonics

For the n-th harmonic radiation,

$$\frac{d^2 F(\omega, \theta)}{d\Omega d\omega/\omega} = F_0 \text{sinc}^2 \left[\pi n N \frac{\omega - n\omega_1(\theta)}{n\omega_1(\theta)} \right]$$

$$\left. rac{\Delta \omega}{n \omega_1(0)} \right|_{FWHM} \sim \left. rac{0.8858}{nN}
ight.$$
 band width $\sigma_{r'n} = \sqrt{rac{1+K^2/2}{4nN\gamma^2}} = \sqrt{rac{\lambda_1/n}{2L}}$ angular divergence $\sigma_{rn} = rac{\lambda_1/n}{\Delta r} = \sqrt{rac{L\lambda_1/n}{2L}}$ beam size

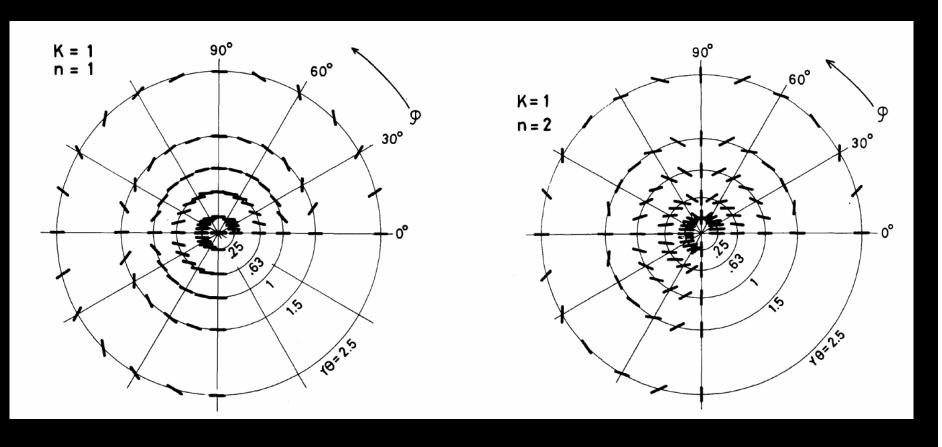
Polarization

- No circular polarized radiation (CPR) is observed unlike the BM radiation.
- This is due to cancellation of CPR components between two adjacent half-period with opposite direction of electron motion (rotation).
- The direction of the linear polarization observed off axis is tilted due to the longitudinal oscillation of electron motion.

Polarization: Examples

Examples of the direction of linear polarization for various observation angles.

H. Kitamura, JJAP 19 (1980) L185

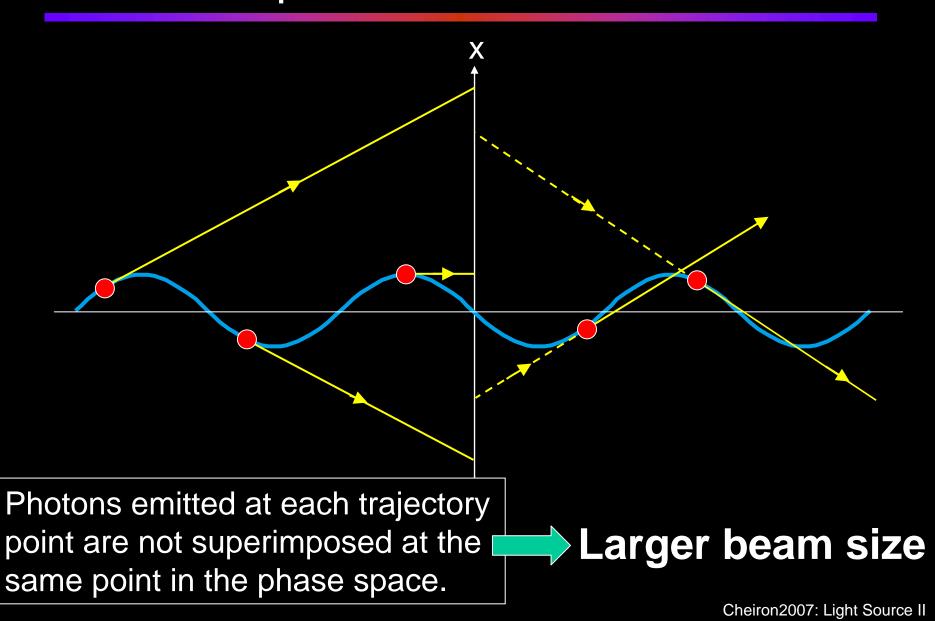


Qualitative Descriptions of Wiggler Radiation

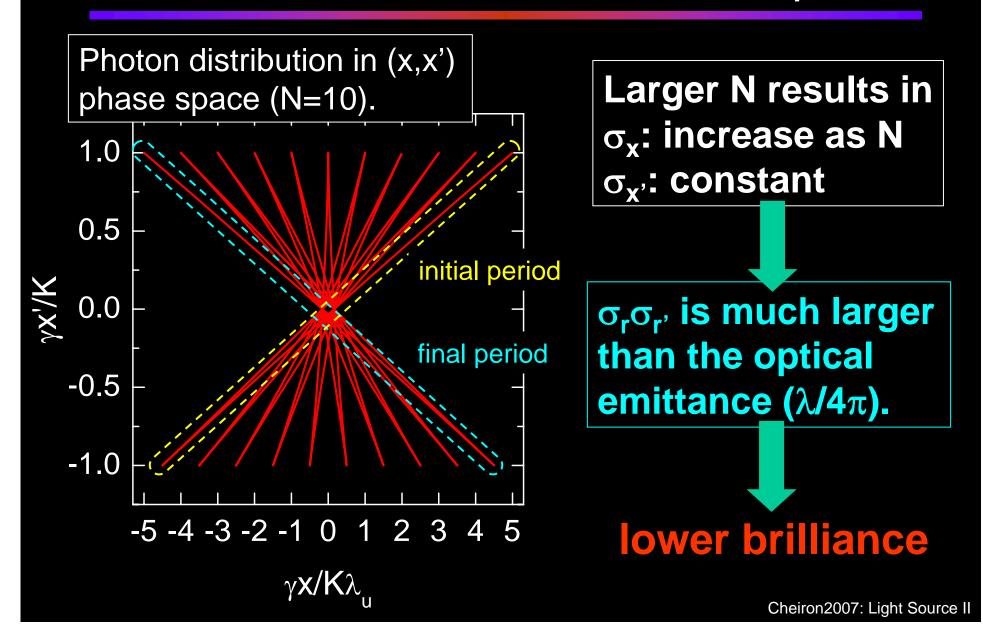
WR: Incoherent Sum of BM Radiation

- Wiggler radiation (WR) is regarded to be incoherent superposition of SR emitted at each position.
- Thus, the flux (density) of WR is simply 2N times that of BM radiation.
- It should be noted, however, that the brilliance of WR is much lower than is expected from a simple estimation.

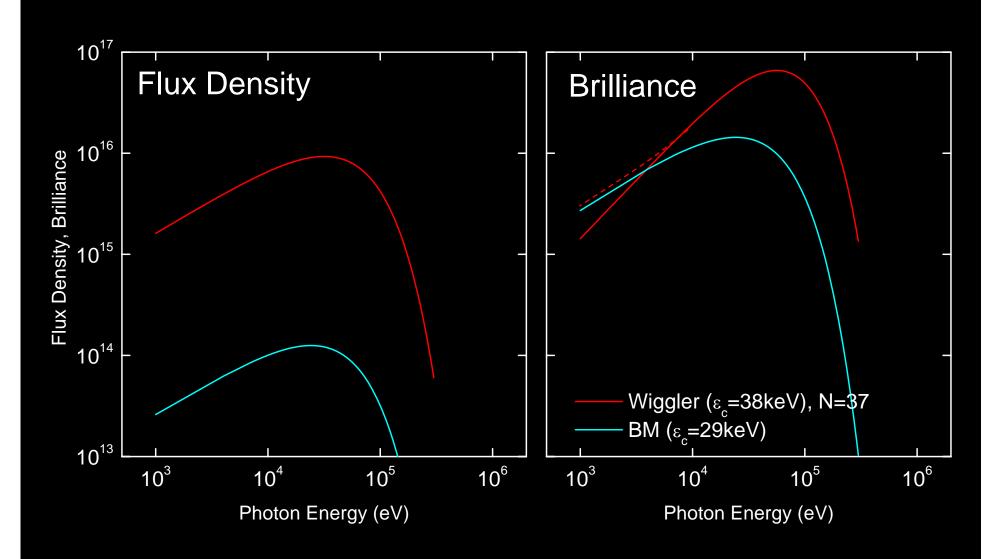
Multiple Source Point in WR

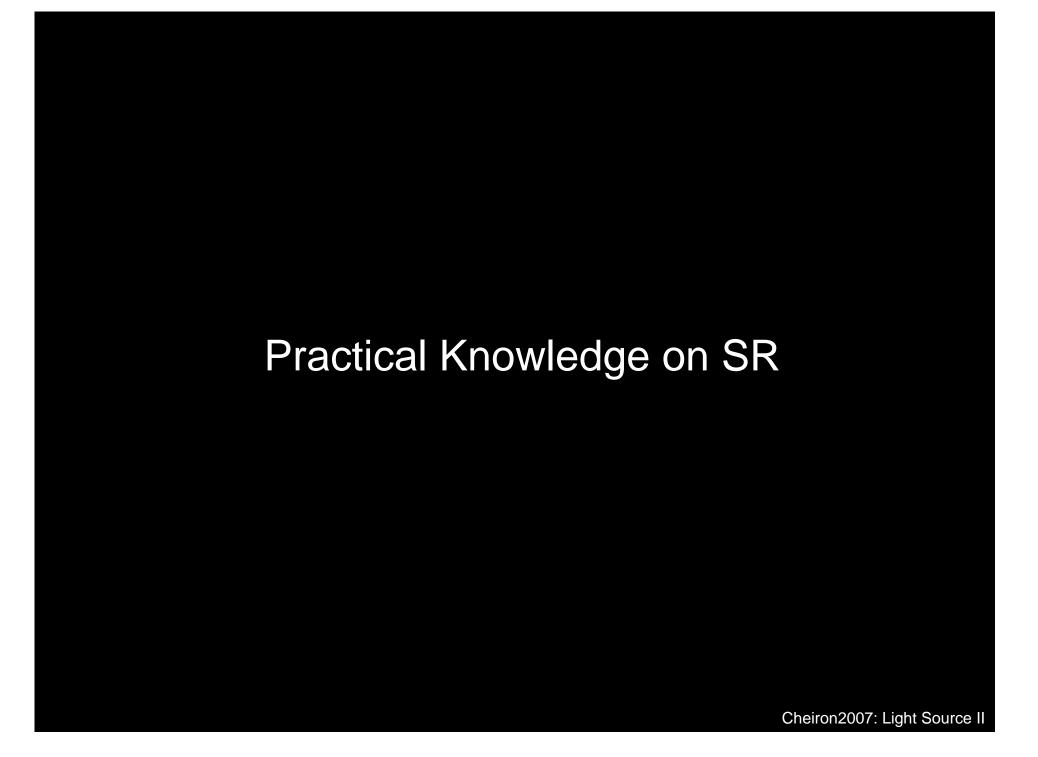


Photon Distribution in Phase Space

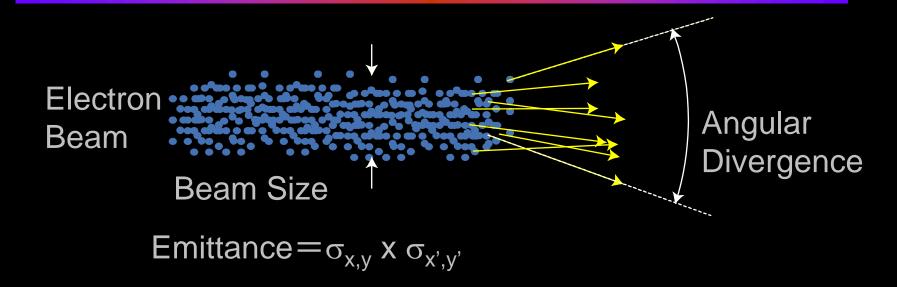


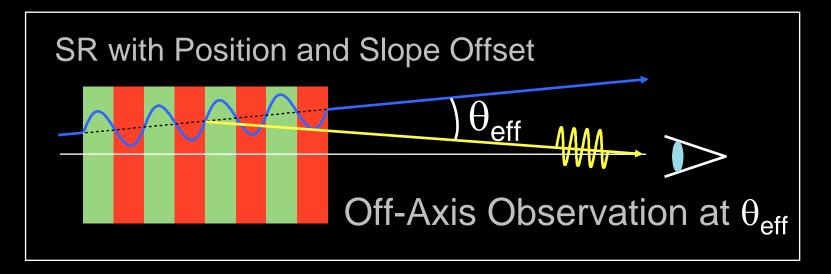
Comparison with BM Radiation





Effects due to Finite Emittance (1)



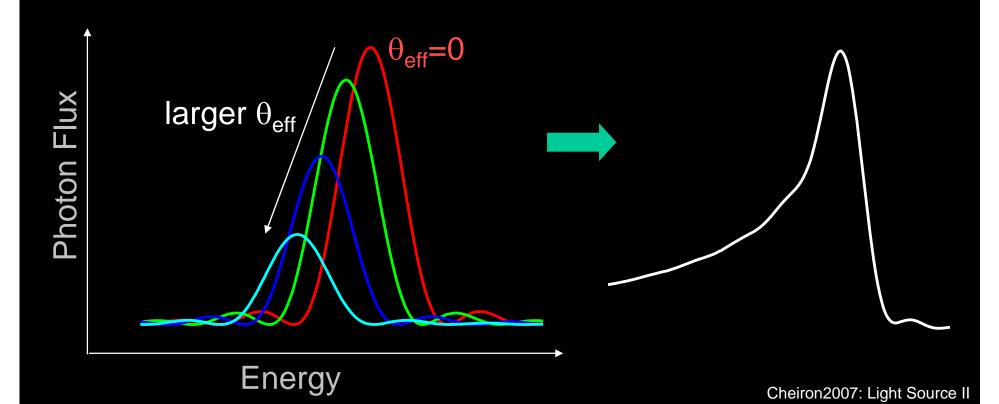


Effects due to Finite Emittance (2)

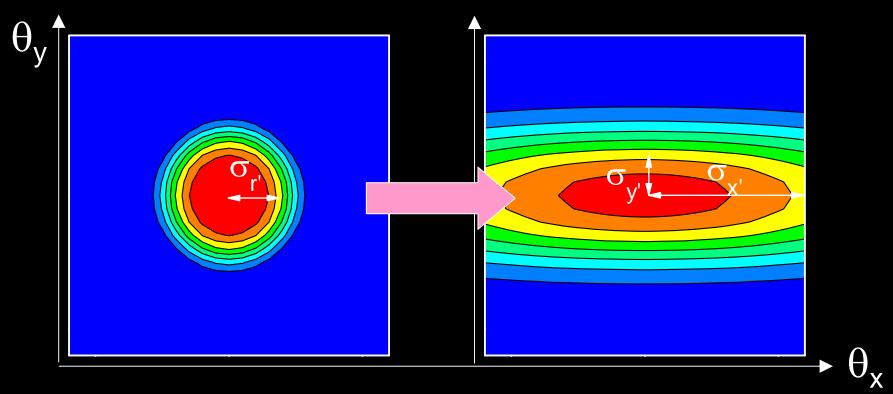
Off-axis observation at θ_{eff}

Peak shift to lower energy

$$\omega_1(\theta) = \frac{4\pi c \gamma^2 / \lambda_u}{1 + \gamma^2 \theta^2 + K^2 / 2}$$



Effects due to Finite Emittance (3)



Under Gaussian approximation

$$\sigma_{x',y'} = \sqrt{\sigma_{r'}^2 + \sigma_{ex',ey'}^2}, \ \sigma_{x,y} = \sqrt{\sigma_r^2 + \sigma_{ex,ey}^2}$$

This expression is valid only near the resonance energy ($n\omega_1$).

Effects due to Finite Emittance (4)

Simple scheme to estimate the on-axis flux density and brilliance.

$$F = F_0 \times 2\pi\sigma_{r'}^2$$

F₀: on-axis flux density for zero-emittance beam F: total flux integrated over whole solid angle

$$F_e = \frac{F}{2\pi\sigma_{x'}\sigma_{y'}} = F_0 \frac{\sigma_{r'}^2}{\sigma_{x'}\sigma_{y'}}$$

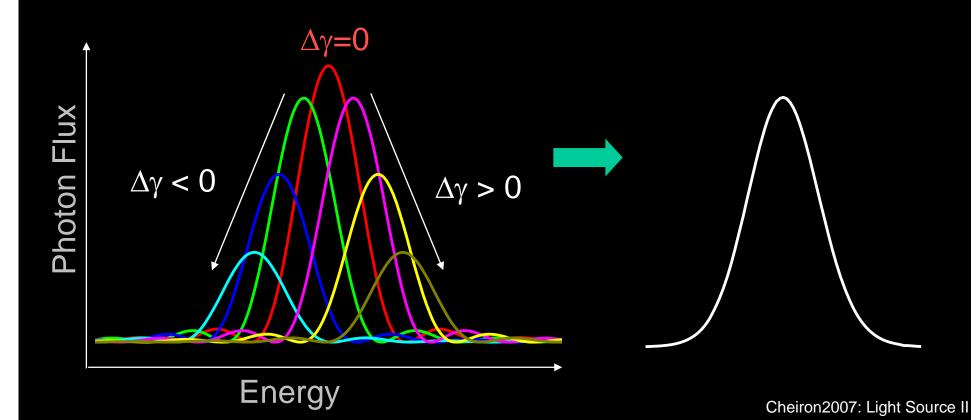
$$B = \frac{F_e}{2\pi\sigma_x\sigma_y} = \frac{F_0}{2\pi\sigma_r^2} \frac{\sigma_r^2\sigma_{r'}^2}{\sigma_x\sigma_{x'}\sigma_y\sigma_{y'}}$$

Effects due to the Energy Spread

Electron with an offset of $\Delta \gamma$

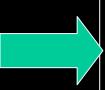
Energy shift of ω_1

$$\omega_1(\gamma) = \frac{4\pi c \gamma^2 / \lambda_u}{1 + K^2 / 2}$$

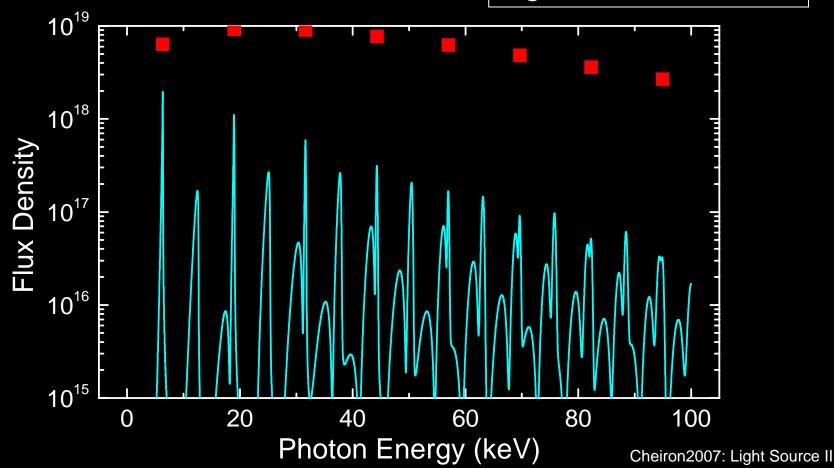


Effects on the Higher Harmonics

Optical Emittance of UR: $\lambda/4\pi$ Bandwidth of UR: $\sim 1/nN$



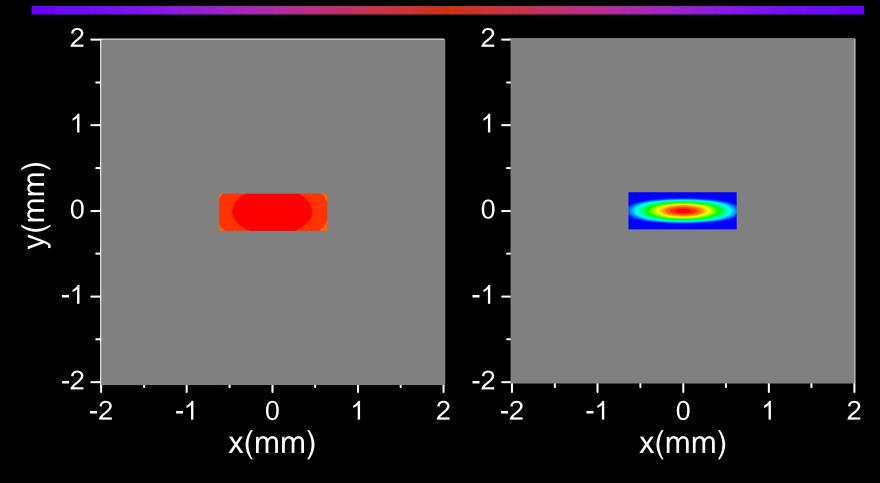
Effects due to the ebeam are larger for higher harmonics



Heat Load on Optical Elements

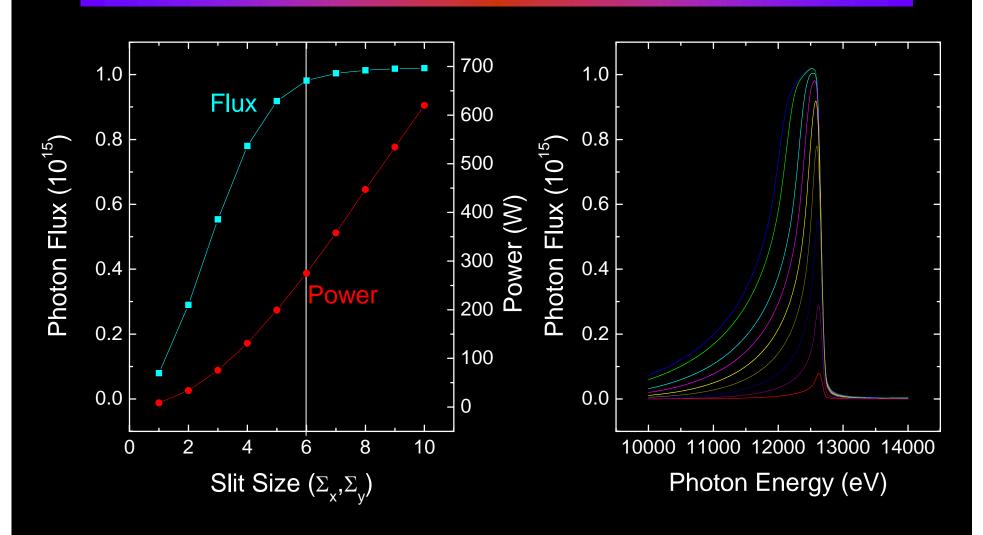
- SR emitted from the light source is processed by several optical elements before irradiation to the sample, such as the focusing mirror, monochromator.
- These elements can be easily damaged by the heat load brought by the SR.
- It is thus important to reduce the heat load as much as possible without sacrificing the flux, which is actually done by the XY slit at the front-end section.

Spatial Profile of Power and Flux



The power profile is much broader than the flux. Extraction of SR with an appropriate slit significantly reduces the heat load.

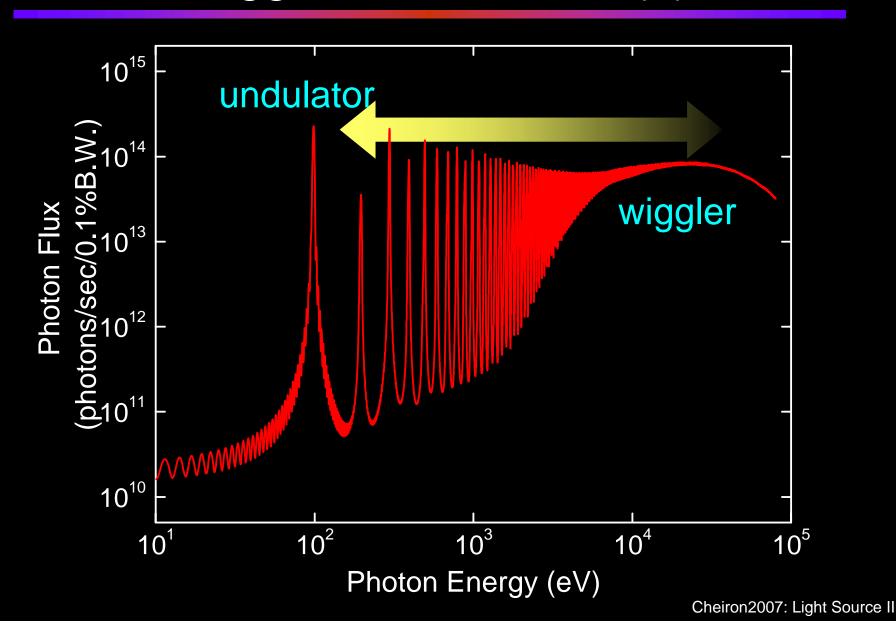
Optimum Slit Size?



Wiggler? Undulator? (1)

- Wigglers are identical to undulator from the point of view of magnetic circuit.
- It is generally said that the K value distinguishes between the two.
- However, this is not exactly correct.
- What we should take care is the region of photon energy to be utilized for application.

Wiggler? Undulator? (2)



Other Topics Not Addressed

- Quantitative descriptions of SR
- Light sources for circular polarization and schemes for fast helicity switching
 - helical undulator & elliptic wiggler
 - chicanes&choppers, kicker magnets
- Effects on the electron beam
 - natural focusing
 - beam-axis fluctuation due to COD variation
- R&Ds toward shorter magnetic period
 - superconducting undulators
 - cryogenic permanent magnet undulators
- Coherent SR for intense THz light
- Undulators for SASE-based X-ray FEL

Announcements

If you have your own PC, please download "SPECTRA" from the Web site

http://radiant.harima.riken.go.jp/spectra/index.html

for the lecture on Thu. 16:20~.

Thank you.