Cheiron School 2007 by AOFSRR SPRing-8

13 September 2007

Protein Crystallography

High Energy Accelerator Research Organization (KEK) Institute of Materials Science Photon Factory Structural Biology Research Center Soichi Wakatsuki soichi.wakatsuki@kek.jp http://pfweis.kek.jp/eng/index.html

Outline

- **1. Introduction to protein crystallography**
- 2. High throughput technologies for synchrotron experiments systems approach
- 3. Structural proteomics on post-translational modification and transport of proteins: protein-protein interactions in membrane traffic

Role of Structural Biology

E. Coli cell

David S. Goodsell, Scripps Institute, http://www.scripps.edu/mb/goodsell/

Endocytosis of toxin by a clathrin vesicle

David S. Goodsell, Scripps Institute, http://www.scripps.edu/mb/goodsell/

Panoramic view of a eukaryotic cell

http://www.scripps.edu/mb/goodsell/

COLORS: proteins in blue, ribosomes in magenta, DNA and RNA in red and orange, lipids in yellow, and carbohydrates in green.

David S. Goodsell, Scripps Institute

The Worldwide Protein Data Bank (wwPDB)

http://www.wwpdb.org/index.html

David S. Goodsell, Scripps Institute

Acetylcholine esterase

Prof. Joel Sussmann Weizmann Institute, Israel

• ..¥Joel Sussman¥richardnew.mpg

Future: automated/integrated system

Expression and purification

Crystallization

Crystal harvesting

Data analysis

Automated data collection

Mouting & data collection

Flow of protein structure analysis

Guanine nucleotide exchange factor Sec12p

ttcq tqacaqctaq ttataacqtc qqqtatcctq cqtacqqtqc aaaatttttq 1 61 aataacqaca cattacttqt qqcaqqcqqt qqaqqaqaaq qaaacaatqq cataccaaac 121 aagctgacgg tcttgcgcgt ggatcctacc aaagatactg agaaggaaca gtttcatata 181 ttgagcgagt ttgcattgga agacaacgac gactctccta ctgcaattga cgcttccaag 241 ggtatcattt tggttggctg caatgaaaat agcactaaga ttacccaagg taaaggtaat 301 aagcacttga gaaaatttaa atacgataaa gtgaatgatc aattggagtt cctcactagt 361 gtagactttg acgcatctac aaatgcggat gactacacga agctggttta tatttcacga 421 gaaggtaccg ttgcagctat cgcatcatct aaagtacctg ctataatgag aatcattgac 481 ccqaqcqact tqacaqaqaa qtttqaqatc qaqactaqqq qtqaaqtaaa qqatttacac 541 ttttccactg atggtaaggt tgttgcttat atcaccggtt ctagcttgga agtgatttca 601 acagtgactg gaagttgcat tgctaggaaa acagattttg ataagaattg gagtttatct 661 aaaataaact tcatagccga tgacacagta ttgatagcag cctctttaaa aaaagggaaa 721 ggtattgtgc tgaccaaaat aagcatcaaa tcaggaaaca cttccgtatt aagatccaaa 781 caagtgacaa acagattcaa agggattact tctatggatg tcgacatgaa gggtgaattg 841 gcggtactgg caagtaatga caattccata gctcttgtga aactaaaaga cctgtcaatg 901 tctaaaatat tcaaacaagc tcatagtttt gccattacag aggtcactat ctctccggac 961 tetacatatg tggcgagtgt ttcggcagee aacaetatee acataataaa attacegett 1021 aactacgcca actacacctc aatgaaacaa aaaatctcta aatttttcac caacttcatc 1081 cttattqtqc tqctttctta cattttacaq ttctcctata aqcacaattt qcattccatq 1141 cttttcaatt acgcgaagga caattttcta acgaaaagag acaccatctc ttcgccctac 1201 gtagttgatg aagacttaca tcaaacaact ttgtttggca accacggtac aaaaacatct 1261 gtacctagcg tagattccat aaaagtgcat ggcgtgcatg agacgagttc tgtgaatgga 1321 actgaagtet tatgtaetga aagtaacatt attaataetg gagggggeaga gtttgagate 1381 accaacgcaa cttttcgaga aatagatgat gcttga

No. of bases : 1416

FVTASYNVGYPAYGAKFLNNDTLLVAGGGGEGNNGIPNKLTV LRVDPTKDTEKEQFHILSEFALEDNDDSPTAIDASKGIILVGCNENSTKITQGKGNKH LRKFKYDKVNDQLEFLTSVDFDASTNADDYTKLVYISREGTVAAIASSKVPAIMRIID PSDLTEKFEIETRGEVKDLHFSTDGKVVAYITGSSLEVISTVTGSCIARKTDFDKNWS LSKINFIADDTVLIAASLKKGKGIVLTKISIKSGNTSVLRSKQVTNRFKGITSMDVDM KGELAVLASNDNSIALVKLKDLSMSKIFKQAHSFAITEVTISPDSTYVASVSAANTIH IIKLPLNYANYTSMKQKISKFFTNFILIVLLSYILQFSYKHNLHSMLFNYAKDNFLTK RDTISSPYVVDEDLHQTTLFGNHGTKTSVPSVDSIKVHGVHETSSVNGTEVLCTESNI INTGGAEFEITNATFREIDDA

No of amino acid residues: 471

Model structure of Sec12

(1416-3)/3=471

Phase Determination using Multiple Anomalous Dispersion

Methionine Sulfur → Selenium (SeMet)

A ribbon representation of a protein with 70 selenium atoms superimposed in colour. Equivalent selenium atoms from molecule to molecule are coloured the same.

Protein crystallization by vapor diffusion method

Drawing by Prof. Yoshiki Higuchi

Fig. 3

Protein Crystallization and crystal observation robot system

🕘 戻る 🔹

アドレス(D) 🐻 http://t 🔻 🔁 移動 リンク »

Speed: 1 plate/36 sec = 2,500 plates/day = 240,000 trials/day Sitting drop volume: 500 nL later down to 50 nL

Protein Crystallization and crystal observation robot system

Protein Crystals

Micromanipulator system In collaboration with Dr.Tanikawa (AIST)

MICRO_MANIPULATION.AV

~10¹² proteins in a typical (good size) crystal

bar=0.1 mm

Crystallization method:hanging drop vapor diffusionProtein conc.:13 mg / mlPrecipitant:17 % (w/v) PEG3350, 0.2 M KH2PO4Buffer:0.1 M Tris-HCI (pH 7.5)Temperature:20 °C

Crystal of Human GGA1 VHS domain

Packing of proteins in a crystal 30~70 % volume of protein crystals is solvent!

Blue Tongue Virus Core Particle 1 755 X 796 X 825 Å³ ESRF ID14/EH3 Detector: Imaging Plate Crystal to 1250 det distance mm 0.918Å Wavelength Osc. Angle 0.1 deg Exp. Time 100 sec 100 mm Beam size 100 mm 181 mm

Multi wavelength anomalous dispersion

- •Good method as long as heavy atom derivatives are available
- ·Multiple data sets need to be collected quickly
- Possible to use for extremely large complexes

Many successes

Methods to Determine Phases

Anomalous signal from light atoms (eg: S)

•No need for preparing heavy atoms: highly applicable for very difficult cases for which heavy atom derivatives cannot be prepared

- •Light elements need low X-ray energy for higher anomalous signal
- •Weak anomalous signal necessitates extremely highly accurate data, thus high redundancy

Phase determination using MAD

Absorption edge measurement

FPH(SeMet)-FP(native) difference Patterson Map

FE3(+)-FE3(-) anomalous difference Patterson Map

FPH(SeMet)-FP(native) anomalous difference Patterson Map

FE4(remote1)-FE2(edge) dispersive difference Patterson Map

Ribbon diagram of trimer of GGA1 GAT domain

Triangle is threefold axis.

X-ray Area Detectors for Synchrotron X-ray Protein Crystallography

X-ray Area Detectors for Synchrotron X-ray Protein Crystallographic Data

Co	lection

Detectors	Pros	Cons	
On-line imaging plates	Large dynamic range, large area	Slow readout (20 to 200 sec per image) -> poor duty cycle	
		Relatively broad PSF	
		Relatively inexpensive	
Off-line imaging plates	Large dynamic range, large area	Slow read-out (20 to 200 sec per image) - > poor duty cycle	
		Relatively broad PSF	
		Cumbersome to handle	
Tiled, tapered fiber	Fast readout (0.3 to dozens of secs)	Limited dynamic range (~<16 bits)	
optics CCD		Expensive to cover large solid angle	
Lens-coupled CCD	Large active area (300 mm diameter) Inexpensive	Has gone into market very recently, and not yet established.	
	•	Large (1 m long) and heavy (100 kg)	
Flat Panel Detectors	Inexpensive, very light (~7 kg)	Inherent problem of noise	
	Large active area (easily 400 mm square)		
Pixel Array Detectors	East readout (a few seconds)	Still under development	
(PAD)	Extremely Fast readout	Difficult to tile the components to cover a large solid angle	
HARP based Field	Extremely sensitive (800 X CCD)	At the very first stage of the development	
Emitter Array (FEA)	Large area and very fast readout		
	Very good PSF		

Detector Requirements for good PX data collection

- Large, fast, reliable and inexpensive
- Must be an integrated system data acquisition and storage data analysis archiving
- Easy to maintain

Next generation detector: large area, high sensitivity, high speed, high resolution

SPring-8 CMOS based flat panel detector development

Courtesy of Dr. Masaki Yamamoto

Continuous rotation method: (Near FUTURE) (eg. 1 X 90 degs rotation) Data transfer **Insertion device 2D area detector** SR Ring Crystal rotation

Continuous rotation method: (Near FUTURE) (eg. single sweep of 90 deg rotation)

PF-AR NW12: Highthroughput MAD beam line

Total data collection time for 180 frames: 10 to 30 min

Long camera distance and large area size of the detector allow the data collection of crystals with large cell dimensions

NW12: data collection from very small crystals. Tool box makes manual crystal mounting easy.

SSRL-type robot installed on MAD Beamline BL-5

KEK modification: double tongue

20 datasets/day ⇒ 100s datasets/day Also in Taiwan and Australia under commissioing. Canada? Compatibility with SPring8 pins and other standards

Less time for crystal exchange

Double tongs mechanisms

Trip to the SSRL (44 hours on 25, 26 July, 2005)

- 59 crystals frozen into a cassette, FedExed to the SSRL in a dry shipper prior to the beamtime on BL9-2.
- 9 data sets including 2 MAD data sets. One structure solved during the experiment.
- Fucosidase project in collaboration with Prof. Kenji Yamamoto, Kyoto University
- Fucosidase: 1959 amino acids, molecular weight 200,000
 ⇒ Catalytic core: 899 residues.
- A first-year master course student came to PF at the end of May, had obtained 1.2 Å resolution native data at PF.
- At the SSRL, we obtained 3.0 Å MAD and 1.6 Å SAD data sets. The MAD data was used to solved the structure while we were still at the beamline.
- Out of 1798 a.a. in a dimer, 1730 residues are assigned in 18 peptides, out of which 1721 a.a. match the sequence.

Multipole Wiggler Beam Line BL9-2 of SSRL, Stanford, USA

Crystal cassette: MPW MAD beamline BL9-2 of SSRL

Searching the best spot on multi-crystals of fucosidase

1.12Å electron density map

Active site of fucosidase

Crystallographic project started in May 2005, and the 899 a.a. dimer structure determined in August the same year.

NEW BL17A short gap undulator beam line: Example of small crystals (funded by JST Frontier Technology Development Project)

Provided by Dr. Tadanobu Tanaka of Showa University

High precision one axis diffractometers with XYZ stages

BL	BL-6A	NW12	BL-5	BL-17
Year started	2000*	2003	2004	2006 ⇒ 2009
Max deviation	10	2.2	1.0	0.6⇒ 0.1
Xtal size (μ m)	100	22	10	6 ⇒ 1

BL-5 type diffractometer -> also to be installed on BL41XU & BL44XU, SPring8

Industrial Use and Collaborations between KEK and Industry (~8% of beamtime)

Protein 3000 (Ministry of Education, Culture, Sports, Science and Technology)

Protein 3000 (FY2002-2006)

National Project on Protein Structural and Functional Analyses

> 150 groups involved

8 Consotia: Target oriented structural genomics of Protein 3000 (FY2002-2006)

Network Committee for Protein Analyses 500~600 structures/5 years, HT R&D

Transcription and Translation (Tanaka, Nishimura)

Development and Cell Differentiation (Tanokura)

Protein Transport and Modification (Wakatsuki)

Signal Transduction (Inagaki)

Higher Order Biological Functions (Miki)

Brain and Neurology (Nakagawa)

Metabolism (Kuramitsu)

reserved for

the project

Protein 3000 Tsukuba Structural Biology Consortium (21 groups)

Protein glycosylation and transport

Treatment of lysosomal

Collaboration outside of Japan

- 1. Human sialidase: G. Tattamanti & G. Monti, Italy, (Chavas et al., *JBC*, 2005)
- 2. Human sialidase inhibitors: M.v. Itzstein, Institute for Glycomics, Griffith University, Australia
- 3. Sialidase inhibitors: Peter Colman, Australia Steve Withers, Canada
- 4. ESCRT proteins: H. Stenmark, Oslo, Norway
 - (Slagsvold et al. *JBC*, 2005, Hirano et al. *NSMB*, 13, 272, 2006, Hirano et al. *NSMB*, 13:1031, 2006)
- 5. Protein carbohydrate recognition in HIV infection:
 - R. Varadarajan, Bangalore, India
- 6. Protein carbohydrate interaction, Johan Deisenhofer, Univ. Texas, USA (C.-I. Chang et al. *PNAS*, June 2005)

Fabry Disease and Enzyme Replacement Therapy

Fabry disease : A disease caused by mutation of α -galactosidase gene, which degrades enzymatic activity of the hydrolase in lysosome leading to accumulation of glycolipids

Vesicle transport from the ER to the Golgi apparatus

Lippincott-Schwartz, J. (1998) MBC 9, 1617

M. Marsh and H. T. McMahon, Science, 1999, Vol. 285, 215

http://www.hms.harvard.edu/news/clathrin/

Two families of adaptor proteins: AP and GGA

Partners of human GGA1

The list is still growing!

VHS: Vps27p/Hrs/STAM Domain

GAT=GGAH: GGA Homology Domain

GAE=AGEH: Adaptor γ Ear Homology Domain

Structural changes of the domain arrangement of VHS-GAT domain upopn mannose 6-phosphate receptor Cterm peptide binding using small angle X-ray scattering (H. Kamikubo, M. Kataoka et al., in preparation) Data collected on PF-BL10C

ACLL (acidic dileucin) motif

ACLL Peptides recognized by GGA1-VHS domain

LRP3		-MLEASDDEALLVC
CI-MPR		-SFHDDSDEDLLHI
Sort(WT Sort(DD Sort(S/ Sort(S/ Sort(DE Sort(LL β-secret) /NN) A) D) D/NQN) /AA) ase	-GYHDDSDEDLLE -GYHNNSDEDLLE -GYHDDADEDLLE -GYHDDDDEDLLE -GYHDDSNQNLLE -GYHDDSDEDAAE -QHDDFADDISLLK
Red:	acidic	residues
Blue:	leucine	e pairs
Purple: be	serine phospl	residues that can horylated by CK-II
Takatsu 28541-28	et al, J. 3545	. Biol. Chem. 276,

From S. A. Tooze, Science, vol. 292, 1 June, 2001

Crystal of Human GGA1 VHS domain

Crystallization method:hanging drop vapor diffusionProtein conc.:13 mg / mlPrecipitant:17 % (w/v) PEG3350, 0.2 M KH2PO4Buffer:0.1 M Tris-HCI (pH 7.5)Temperature:20 °C

2.1A structure of the VHS domain of a human GGA protein in the apoform

Protein preparation started on 23 April, 2001

Monday 5 PM, 13 August, complex crystals FedExed to ALS Wednesday 1 PM, 15 August, 1.8A data set collected at ALS!

Fig.1

Ribbon diagram of VHS domain of human GGA1 complex with M6PR peptide. The peptide molecule is shown as a ball-and-stick model colored according to atom type (nitrogen, blue; carbon, yellow; oxygen, red).

M6PR recognition by GGA1-VHS

The two-hybrid experiments of the mutants confirm the importance of specific interactions between the peptide and the protein.

Asp7^M recognition

NATURE |VOL 415 | 21 FEBRUARY 2002

Structural basis for acidic-clusterdileucine sorting-signal recognition by VHS domains

Saurav Misra*, Rosa Puertollano \dagger , Yukio Kato \dagger , Juan S. Bonifacino \dagger & James H. Hurley*

* Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA

[†] Cell Biology and Metabolism Branch, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA

Structural basis for recognition of acidic-cluster dileucine sequence by GGA1

Tomoo Shiba*†‡, Hiroyuki Takatsu‡§, Terukazu Nogi*, Naohiro Matsugaki*, Masato Kawasaki*, Noriyuki Igarashi*, Mamoru Suzuki*, Ryuichi Kato*, Thomas Earnest||, Kazuhisa Nakayama§ & Soichi Wakatsuki*

* Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
† Foundation for Advancement of International Science (FAIS), Tsukuba, Ibaraki 305-0062, Japan
§ Institute of Biological Sciences and Gene Research Center, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
|| Advanced Light Source, Berkeley, Berkeley Center for Structural Biology, Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
‡ These authors contributed equally to this work

pp 933-937

.....

PART 3: Membrane anchoring:

Collection of adapter proteins to the TGN membrane surface

GAT=GGAH: GGA Homology Domain

GAE=AGEH: Adaptor γ Ear Homology Domain

Four groups independently solved the structure of GGA1 GAT domain almost at the same time

Group	PDB	Resolution (Å)
KEK ¹	1J2H	2.1
Univ. of Cambridge ²	1NAF	2.8
NIH ³	1NWM	2.4
OMRF, Oklahoma ⁴	10XZ	2.8

2003,	May
2003,	March
2003,	April
2003,	June

¹Shiba, T. *et al. Nature Struct. Biol.* 10, 386-393
²Collins, B. M. *et al. Dev. Cell*, 4, 321-332
³Suer, S. *et al. Proc. Natl. Acad. Sci.* 100, 4451-4456
⁴Zhu, G. *et al. Biochemistry* 42, 6392-6399

Three helices or four helices?

Oklahoma : gray

Trimerization of GGA1 GAT domain

Our group R3 NSB, 7 April 2003

D. J. Owen P6₃ Develop. Cell, 11 Mar 2003

4 helices without ARF-GTP!!!

J. H. Hurley (*R*3) *PNAS*, 31 Mar 2003

GAT domain

N-GAT & ARF1-GTP complex

Interaction surfaces of N-GAT and ARF1-GTP

GGA-GAT docks on the membrane via mostly hydrophobic interactions with Switches 1 & 2 and interswitch region of ARF1-GTP

Downregulation of growth factor receptors

Raiborg, Rusten and Stenmark 2003 Current Opinion in Cell Biology, vol. 15 pp. 446–455

Model for the Multivesicular Body, MVB, Sorting (ESCRT) of cell surface receptors such as EGFR

Ubiquitin and PI binding is important!

Domain structure of Hrs

S. Hirano et al., in collaboration with Harald Stenmark, Norway

Complex structure of Hrs-UIM:Ubiquitin ①

One Hrs-UIM interacts with TWO ubiquitin molecules.

S. Hirano et al., Nature Struct. & Mol. Biol., 13, 272-7, March 2006

Canon on a theme of ubiquitin

E____LAL_LSQ_E LQEEELQLALALSQSEAEEK E___QL_LAL_QSE_E

Double sided ubiquitin binding S. Hirano et al., *Nature Struct. & Mol. Biol.*, 13, 272-7, March 2006

Binding assay of Hrs-UIM

20 mM sodium phosphate pH 6.0, 10 mM NaCl, 0.005% P20, 25°C

RUmax of wild type is about double of single mutants. \rightarrow Hrs-UIM has two binding sites.

Double sided Ub binding is ubiquitous!

						\square	L						()	1				N						
Double-sided UIMs/Sing	gle	UIMs					V							V				V						
Hs Hrs UIM		257	L	Q	Е	Е	Е	Е	L	Q	L	А	L	А	L	S	Q	S	Е	А	Е	Е	Κ	O14964
Hs USP25 UIM		96	G	D	D	Κ	D	D	L	Q	R	А	I	А	L	S	L	А	Е	S	Ν	R	А	Q9UHP3
Hs MEKK1 UIM	*	1166	А	Е	Е	Е	Е	А	L	А	I	А	М	А	М	S	А	S	Q	V	А	L	Ρ	Q13233
Sp STAM-like UIM	*	163	Κ	R	Е	Е	Е	Е	L	Q	Υ	А	L	А	L	S	L	S	Е	S	Т	А	Q	074749
Double-sided UIMs/Tar	nde	m UIMs	6																					
Mm Eps15 UIM-2		877	Q	Q	Е	Q	Е	D	L	Е	L	А	Ι	А	L	S	Κ	S	Е	I	S	Е	А	P42567
Mm Eps15R UIM-2		888	R	Q	Е	Q	Е	D	L	Е	L	А	Ι	А	L	S	Κ	А	D	М	Ρ	А		Q60902
Hs HSJ1 UIM-2		249	L	S	Е	D	Е	D	L	Q	L	А	М	А	Υ	S	L	S	Е	М	Е	А	А	P25686
Sc Ufo1 UIM-3		650	Ν	Ν	V	D	Е	D	L	Q	L	А	Ι	Α	L	S	L	S	Е	Ι	Ν			Q04511
At C7A10.500 UIM-1		64	D	F	D	Κ	Е	Е	I	Е	С	А	Ι	А	L	S	L	S	Е	Q	Е	Н	V	O23197
Hs LOC130617 UIM-2	*	220	С	Q	Е	Е	Е	D	L	А	L	А	Q	А	L	S	А	S	Е	А	Е	Υ	Q	Q8WV99
Double-sided motif					е	х	е	х	¢	х	¢	A	ø	А	z	S	z	S⁄	е					
																		A						

Single-sided UIMs/Single UIMs

Hs STAM UIM	170 K	Κ	Е	Е	Е	D	L	А	Κ	ΑI	Е	L	S	L	Κ	Е	Q	R	Q	Q	Q92783
Mm HBP UIM	164 N	Κ	Е	D	Е	D	I	А	Κ	ΑI	Е	L	S	L	Q	Е	Q	Κ	Q	Q	O88811

Single-sided UIMs/Tandem UIMs

Sc Vps27p UIM -1	2	284 E	D	Е	Е	Е	L	I	R	K	А	I	Е	L	S	L	К	Е	S	R	Ν	S	P40343
Sc Vps27p UIM-2	3	300 E	Е	Е	D	Ρ	D	L	K	A	A	I	Q	Е	S	L	R	Е	A	E	E	A	
Mm Eps15 UIM-1	3	351 P	S	Е	Е	D	М	I	Е	W	А	К	R	Е	S	Е	R	Е	Е	Е	Q	R	P42567
Mm Eps15R UIM-1	3	362 G	Ν	Е	Е	Q	Q	L	А	W	А	Κ	R	Е	S	Е	Κ	Α	Е	Q	Е	R	Q60902
Hs Epsin UIM-1	1	182 G	Е	Е	Е	L	Q	L	Q	L	А	L	А	М	S	Κ	Е	Е	А	D	Q	Е	BAB14041
Hs Epsin UIM-2	2	207 R	G	D	D	L	R	L	Q	М	А	I	Е	Е	S	Κ	R	Е	Т	G	G	Κ	
Hs Epsin2 UIM-1	2	275 G	Е	Е	Е	L	Q	L	Q	L	А	L	А	М	S	R	Е	V	А	Е	Q	Е	O95208
Hs Epsin2 UIM-2	3	300 R	G	D	D	L	R	L	Q	М	А	L	Е	Е	S	R	R	D	Т	V	Κ	Ι	
Hs S5a UIM-1	2	210 P	S	Α	D	Ρ	Е	L	А	L	А	L	R	V	S	М	Е	Е	Q	R	Q	R	P55036
Hs S5a UIM-2	2	281 M	Т	Е	Е	Е	Q	I	А	Y	А	М	Q	М	S	L	Q	G	А	Е	F	G	
Hs HSJ1 UIM-1	2	206 N	G	V	Ρ	D	D	L	А	L	G	L	Е	L	S	R	R	Е	Q	Q	Ρ	S	P25686
Sc Ufo1 UIM-1	Ę	546 D	D	Е	D	Е	Q	L	R	R	А	L	Е	Е	S	Q	L	I	Υ	Е	Т	Q	Q04511
Sc Ufo1 UIM-2	5	582 D	Е	D	D	Е	Е	F	L	R	А	I	R	Q	S	R	V	Е	D	Е	R	R	
At C7A10.500 UIM-2	1	109 E	D	Е	D	Е	Е	Y	М	R	А	Q	L	Е	А	Α	Е	Е	Е	Е	R	R	O23197
At C7A10.500 UIM-3	1	171 L	Е	Е	D	Е	L	L	А	K	А	L	Q	Е	S	М	Ν	V	G	S	Ρ	Ρ	
Hs LOC130617 UIM-1	* 2	206 L	S	E	D	Е	Α	L	Q	R	А	L	Е	М	S	L	Α	Е	Т	Κ	Р	Q	Q8WV99
Single-sided motif				е	е	Х	х	¢	х	х	A	ø	х	e⁄	S	z	х	е					
													· ·	6									

single sided tandem Vps27-UIM

Double sided only: Hrs-UIM (human) (yeast) Tandem single sided: Vps27p-UIM (yeast)

Tandem single sided: Eps15-UIM (mouse)

Double sided Ub binding is ubiquitous! Model I: Hrs-UIM can bring receptors together.

Double sided Ub binding is ubiquitous! Model II: Hrs-UIM has higher affinity for multiply monoubiquitinated receptors.

Function of ESCRTs in endosomal sorting of ubiquitinated membrane

From Slagsvold, T. et al. Trends. Cell Biol. (2006) 16:317-326

How does mammalian ESCRT II recognize ubiquitinated cargos?

Slagsvold, et al., J. Biol. Chem.Vol. 280, May 20, 19600–19606, 2005

Slagsvold, et al., J. Biol. Chem.Vol. 280, May 20, 19600–19606, 2005

Structural studies towards new Influenza virus inhibitors

International travel of Neu2

Neu2 crystal

The first mammalian sialidase structure: human Neu2

Leo Chavas et al. in preparation

Collaboration with Eugenio Monti, University of Brescia, Italy 380 a.a. expressed in E. coli.

Inhibitor development for influenza viruses through comparative studies. Collaboration with Prof. M.v. Itzstein, Institute for Glycomics, Griffith University, Australia Chayas et al., J. Biol. Chem. 2005 vol 280, 469-75

Neu2 folding and electrostatic surfaces

Ribbon diagram representation (view from the active site)

Electrostatic surface representation (blue and red regions are basic and acid surfaces respectively)

Chavas et al., J. Biol. Chem. 2005 vol 280, 469-75

Human sialidase Neu2 structure and its complex with DANA

Chavas et al., J. Biol. Chem. 2005 vol 280, 469-75

Neu2 apo form

Neu2 monosaccharide induced form

hours

Neu2 in complex with DANA

Summary and future outlook

 Target oriented structural genomics on protein transport and posttranslational modification: over 254 structures solved for mostly eukaryotic proteins.

More difficult targets (membrane and large protein complexes)

• → Target Protein Research Project

Target Protein Project (5 years: 2007-2011)

- Proposal deadline: 20 April 2007
- Selection results published: 15 June 2007
- 43 teams selected
- No. of PIs and CoPIs: ~150
- Inauguration meeting: 3 & 4 September 2007, Kyoto!

Targets:	Medical	Food and	Fundamental
	importance/relevance	environment	Biology
5 yr term	6	5	7
3 yr term	4	6	5
		Functional	
Protein	e Structural	Control Core	Informatics Core
Production Cor	Analysis Core	(Chem. Library)	
Protein	e Structural	Control Core	Informatics Core 1
Production Cor	Analysis Core	(Chem. Library)	
5 yr 1	1	1	

Target Protein Project (2006-2011) The Analysis Core

Joint Proposal by SPring-8 and PF Two New Micro Focus Beam Lines

In-vacuum Short Gap Undulator Microfocus Beam Lines: softer X-rays

Loopless crystal mounting method Towards lower background:

Promising techniques developed by other groups.

Kitago, Y., Watanabe, N. and Tanaka, I., *Acta Cryst.*, D61, 1013-1021 (2005). http://castor.sci.hokudai.ac.jp/watanabe/Xtal Mount/

Acknolwledgements

Beam Line developments & robotics

Staff of the Photon Factory, Structural Biology Research Center

Masaki Yamamoto et al., SPring-8

Atsushi Nakagawa, Osaka University

Kunio Miki, Kyoto University

Isao Tanaka, Hokkaido University

<u>GGA</u>

Kazuhisa Nakayama, Kyoto University

Yasuo Uchiyama, Osaka University

Koichi Kato, Nagoya City University

Hironari Kamikuba, Mikio Kataoka, Nara Inst. Sci. & Tech

Tomoo Shiba, Masato Kawasaki, Terukazu Nogi, Ryuichi Kato, Photon Factory

Hrs and Eap45(Vps36p)

Thomas Slagsvold & Harald Stenmark, Norwegian Radium Hospital, University of Oslo, Oslo, Norway

Satoshi Hirano, Nobuhiro Suzuki, Daniel Trambaiolo, Ryuichi Kato, Photon Factory Neu2

Eugenio Monti, Guido Tattamanti, Univ. of Milan, Mark v. Itzstein, Griffith Univ, Peter Colman, Australia,

Leo Chavas, Nobuhiro Suzuki, Ryuichi Kato, Photon Factory

Funded by the MEXT, Grant in aid, Protein 3000, JST Frontier Technology Development, JST International Program, Target Protein Research Project